

File No. <u>MA20003/18/0005</u>

Project No.	Project No. CKL 1 - Flat 121 Cha Kwo Ling Village						
Date:	6-N	Jov-20	Next Due Date:	6-Jan-21	Operator:	SK	
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723	
			Ambient Condit	on			
Temperatu	Temperature, Ta (K)297.7Pressure, Pa (mmHg)761.9						

Orifice Transfer Standard Information							
Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274							
Last Calibration Date:	17-Jan-20	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	Next Calibration Date: 17-Jan-21 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$						

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.8	3.72	63.32	10.1		3.18
2	11.2	3.35	57.09	7.6		2.76
3	8.4	2.90	49.51	6.0		2.45
4	5.3	2.31	39.42	3.6		1.90
5	3.1	1.76	30.26	1.9		1.38
Slope , mw = Correlation	coefficient* =		Intercept, bw = _	-0.216	52	_
		Set Point C	alculation			
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM				
From the Regres	sion Equation, the	e "Y" value according to				
Therefore, So	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ v x Qstd + bw) ² x (760 / Pa) x (98/Ta)] ^{1/2} 4.29		_
Remarks:						
Conducted by:	SK Wong	Signature:			Date:	06 November 2020
Checked by:	Henry Leung	Signature:	Xorj		Date:	06 November 2020

File No. <u>MA20003/55/0005</u>

Project No.	Project No. CKL 2 - Flat 103 Cha Kwo Ling Village							
Date:	6-N	lov-20	Next Due Date:	6-Ja	n-21	Operator:	SK	
Equipment No.:	A-	01-55	Model No.:	TE S	5170	Serial No.	1956	
			Ambient Conditi	on				_
Temperatu	ıre, Ta (K)	297.7	Pressure, Pa (mmH			761.9		

Orifice Transfer Standard Information							
Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274							
Last Calibration Date:	17-Jan-20	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 17-Jan-21 $Qstd = \{[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc\} / mc$							

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[∆W x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	14.5	3.81	64.90	9.6		3.10
2	11.3	3.37	57.35	7.0		2.65
3	8.4	2.90	49.51	5.6		2.37
4	5.4	2.33	39.78	3.5		1.87
5	3.1	1.76	30.26	2.2		1.49
Slope , mw = Correlation	<u>0.0461</u> coefficient* =	0.9977	Intercept, bw	0.066	1	
		0, check and recalibrate.	-			
II Conclation (, check and recambrate.				
		Set Point C	alculation			
From the TSP Fi	ield Calibration C	urve, take Qstd = 43 CFM				
		e "Y" value according to				
	,,,	C C				
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore S	at Point: $W = (m)$	$v \ge 0.000 \text{ (x Qstd + bw)}^2 \ge 0.000 \text{ (x Qstd + bw)}^2 \ge 0.0000 \text{ (x Qstd + bw)}^2 \ge 0.0000000000000000000000000000000000$	$T_{a} / 208) -$	4 10		
merciore, S	= (11)	$x = \frac{1}{2} x = $	1a / 298) -	4.19		-
Remarks:						
Conducted by:	SK Wong	Signature:			Date:	06 November 202
Jonducied Dy.		Signature: <u>V/L</u> Signature: <u>Lemp</u>		-	Date.	
		- 1				
Checked by:	Henry Leung	Signature:	Xon		Date:	06 November 20

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA20003_20201106_CKL2_(A-01-55).xls

File No. MA20003/04/0003

Project No. KER 1 - Future Residential Development at Kerry Godown							
Date:	3-D	Dec-20	Next Due Date:	3-F	eb-21	Operator:	SK
Equipment No.:	A-	01-04	Model No.:	TE	5170	Serial No.	10595
	Ambient Condition						
Temperatu	Temperature, Ta (K)290.4Pressure, Pa (mmHg)765.8						

Orifice Transfer Standard Information							
Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274							
Last Calibration Date:	17-Jan-20	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 17-Jan-21 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$							

		Calibration of	TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\begin{bmatrix} \Delta W \ x \ (Pa/760) \ x \ (298/Ta) \end{bmatrix}^{1}$ Y-axis
1	13.3	3.71	63.10	6.5	2.59
2	10.8	3.34	56.91	5.2	2.32
3	8.3	2.93	49.95	4.0	2.03
4	4.5	2.16	36.90	2.6	1.64
5	2.5	1.61	27.62	1.8	1.36
	0.0341 coefficient* = Coefficient < 0.99	0.9963 0, check and recalibrate.	Intercept, bw = _	0.391	6
from the TSP F	ield Calibration (Set Point C Curve, take Qstd = 43 CFM	alculation		
		e "Y" value according to			
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}	
Therefore, Se	et Point; W = (m	w x Qstd + bw $)^{2}$ x (760 / Pa) x (Ta / 298) =	3.33	
Remarks:					
loniai K5.					
Conducted by:	SK Wong	Signature:	.'		Date: 03 December 20

1

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA20003_20201203_KER1_(A-01-04).xls

.

File No. MA20003/44/0004

Project No.	KTD1 - Centre						
Date:	3-1	Dec-20	Next Due Date:	3-Feb-21	Operator:	SK	
Equipment No.:	D.: A-01-44		Model No.:	TE-5170	Serial No	1316	
	Ambient Condition						
Temperature, Ta (K)290.4Pressure, Pa (mmHg)76					765.8		

Orifice Transfer Standard Information							
Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.02740							
Last Calibration Date:	17-Jan-20	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 17-Jan-21 $Qstd = \{ [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc \} / mc$							

		Calibration of	TSP Sampler			
Calibration		Orfice		HVS		
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{\left[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)\right]^{1/2}}{V-axis}$	
1	12.9	3.65	62.16	8.7	3.00	
2	10.4	3.28	55.86	6.6	2.61	
3	7.9	2.86	48.74	4.9	2.25	
4	5.9	2.47	42.18	3.4	1.87	
5	3.1	1.79	30.71	1.8	1.36	
	<pre>coefficient* = Coefficient < 0.99</pre>	0.9982 0, check and recalibrate.	-			
		Set Point C	algulation			
From the TSP F	ield Calibration C	urve, take Qstd = 43 CFM				
		e "Y" value according to				
6	1 ,	$mw x Qstd + bw = [\Delta W x]$	x (Pa/760) x (29	$98/T_{9})1^{1/2}$		
Therefore, Se	et Point; W = (my	$w x Qstd + bw)^2 x (760 / Pa) x ($				
Remarks:						
Conducted by:	SK Wong	Signature:			Date: 03 December 20	
Checked by:	Henry Leung	Signature:	Xon	_	Date: 03 December 20	

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA20003_20201203_KTD1_(A-01-44).xls

File No. MA20003/41/0003

Project No.	KTD 2c - G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)						
Date:	3-Г	Dec-20	Next Due Date:	3-Feb	-21 Operator:	SK	
Equipment No.:	A-01-41		Model No.: TE 5		70 Serial No.	5280	
			Ambient Condition	on			
Temperatu	ure, Ta (K) 290.4		Pressure, Pa (mmH	(mmHg) 765.8			

Orifice Transfer Standard Information								
Serial No.	3746	Slope, mc	0.0592	Intercept, bc	-0.0274			
Last Calibration Date:	17-Jan-20	I	mc x Qstd + bo	$c = [\Delta H x (Pa/760) x (298/Ta)]$] ^{1/2}			
Next Calibration Date:	17-Jan-21		$Qstd = \{[\Delta H x]$	$(Pa/760) \ge (298/Ta)]^{1/2} -bc\} /$	mc			

		Calibration of	TSP Sampler				
Calibration		Orfice			HVS		
Point	$\Delta H \text{ (orifice)},$ in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis	
1	13.5	3.74	63.57	6.5		2.59	
2	11.1	3.39	57.69	5.2		2.32	
3	8.1	2.89	49.35	4.1		2.06	
4	4.6	2.18	37.30	2.5		1.61	
5	2.6	1.64	28.16	1.8		1.36	
Slope , mw = 0.0346 Intercept, bw = Correlation coefficient* = 0.9975 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C	alculation				
From the TSP F	ield Calibration C	urve, take Qstd = 43 CFM					
From the Regree	ssion Equation, th	e "Y" value according to					
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}			
Therefore, So	et Point; W = (my	$w \ge x = (760 / Pa) \ge x$	Ta / 298) =	3.28		_	
Remarks:							
Conducted by:	SK Wong	Signature:			Date:	03 December 2020	
Checked by:	Henry Leung	Signature: <u>V/L</u> Signature: <u>-lemp Ø</u>	~~		Date:	03 December 2020	

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA20003_20201203_KTD2C_(A-01-41).xls

File No. MA20003/18/0006R

Project No.	CKL 1 - Flat 1	21 Cha Kwo Ling				
Date:	6-J	an-21	Next Due Date:	6-Mar-21	Operator:	SK
Equipment No.:	A-	01-18	Model No.:	TE 5170	Serial No.	0723
			Ambient Condit	ion		
Temperatu	ıre, Ta (K)	290.1	Pressure, Pa (mml	Hg)	764.9	

Orifice Transfer Standard Information							
Serial No.	3746	Slope, mc	0.0592	Intercept, bc	-0.0274		
Last Calibration Date:	17-Jan-20	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	17-Jan-21		$Qstd = \{[\Delta H x] \}$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc		

	Calibration of TSP Sampler							
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis		
1	13.7	3.76	64.04	10.2		3.25		
2	11.2	3.40	57.94	7.6		2.80		
3	8.5	2.96	50.54	6.0		2.49		
4	5.4	2.36	40.37	3.5		1.90		
5	3.2	1.82	31.19	1.8		1.36		
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw = <u>0.0560</u> Intercept, bw : <u>-0.3720</u> Correlation coefficient* = <u>0.9983</u>							
*If Correlation C	*If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C	alculation					
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}]$		98/Ta)] ^{1/2}				
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	4.01				
Remarks:	Remarks:							
Conducted by:	SK Wong	Signature:	U'		Date:	6 January 2021		
Checked by:	Henry Leung	Signature:	X27		Date:	6 January 2021		

 $F:\cinotech\ Solutions\Equipment\Calibration\ Cert\HVS\new\MA20003_20210106_CKL1_(A-01-18).xls$

Temperature, Ta (K)

290.1

File No. MA20003/55/0006

764.9

Project No.	CKL 2 - Flat 103 Cha Kwo I					
Date:	6-Jan-21	Next Due Date:	6-Mar-21	Operator:	SK	
Equipment No.:	A-01-55	Model No.:	TE 5170	Serial No.	1956	
		Ambient Condit	ion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No.	3746	Slope, mc	0.0592	Intercept, bc	-0.0274		
Last Calibration Date:	17-Jan-20	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	17-Jan-21		$Qstd = \{[\Delta H x] \}$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc		

	Calibration of TSP Sampler							
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	/760) x (298/Ta)] ^{1/2} Y-axis		
1	13.9	3.79	64.50	9.5		3.13		
2	11.4	3.43	58.45	7.2		2.73		
3	8.5	2.96	50.54	5.7		2.43		
4	5.3	2.34	40.00	3.6		1.93		
5	2.9	1.73	29.71	2.1		1.47		
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0466 Intercept, bw =0.0736 Correlation coefficient* =0.9976 *If Correlation Coefficient < 0.990, check and recalibrate.							
	Set Point Calculation							
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ $\mathbf{v} \mathbf{x} \mathbf{Qstd} + \mathbf{bw}^{2} \mathbf{x} (760 / Pa) \mathbf{x} (760 / Pa) \mathbf{x} (760 / Pa)$						
Remarks:								
Conducted by:	SK Wong	Signature:	<i>.</i>		Date:	6 January 2021		
Checked by:	Henry Leung	Signature:	. Xvy		Date:	6 January 2021		

RECALIBRATION DUE DATE:

January 17, 2021

n m e n t a l Dertificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	January 17	, 2020	Roots	meter S/N:	438320 Ta: 295		295	°К
Operator:	Jim Tisch					Pa:	744.2	mm Hg
Calibration	Model #:	TE-5025A	Cali	brator S/N:	3746			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔН	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4340	3.2	2.00	
	2	3	4	1	1.0180	6.4	4.00	
	3	5	6	1	0.9080	7.9	5.00	
	4	7	8	1	0.8700	8.7	5.50	
	5	9	10	1	0.7150	12.6	8.00	
			[Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>)		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax		Va	(x-axis)	(y-axis)	
	0.9849	0.6868	1.40		0.9957	0.6944	0.8904	
	0.9807	0.9633	1.98		0.9914	0.9739	1.2592	
	0.9787	1.0779	2.22		0.9894	1.0896	1.4078	
	0.9776	1.1237 1.3601	2.33		0.9883	1.1360	1.4765	
	0.3724	1.3001 m=	2.813		0.9831	1.3749 m=	1.7808 1.31010	
	QSTD	b=	-0.027		QA	b=	-0.01759	
	QJID	r=	0.999		QA	r=	0.99994	
				Calculatio	ns			
	Vstd=	ΔVol((Pa-ΔP)	/Pstd)(Tstd/Ta	a)	Va=	ΔVol((Pa-ΔF	P)/Pa)	
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime			
			For subsequ	ent flow ra	te calculation	าร:		
	Qstd=	$1/m\left(\sqrt{\Delta H}\right)$	Pa Pstd / Tstd Ta) -b)	Qa=	$1/m \left(\sqrt{\Delta H} \right)$	(Та/Ра))-b)	
		Conditions						
Tstd:	298.15	°K		[RECAI	IBRATION	
Tstd: Pstd:	298.15 760	°K mm Hg			US FPA reco			n ner 1000
Pstd:	298.15 760	°K mm Hg Key	n H2Q)			ommends ar	nual recalibratio	
Pstd: \H: calibrate	298.15 760 kor manomet	°K mm Hg K ey Ser reading (in			40 Code	ommends ar of Federal R	nual recalibratio	50 to 51,
Pstd: \H: calibrate \P: rootsme	298.15 760 or manomet ter manomet	°K mm Hg Key			40 Code Appendix E	ommends ar of Federal R 3 to Part 50,	nual recalibratio legulations Part 5 Reference Meth	50 to 51, od for the
Pstd:	298.15 760 r manomet eter manome psolute tem	°K mm Hg Key ter reading (in ter reading	(mm Hg)		40 Code Appendix E Determinat	ommends ar of Federal R 3 to Part 50, ion of Suspe	nual recalibratio	50 to 51, od for the Matter in

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

CIN@TECH 🤳

Cerificate of Calibration - Wind Monitoring Station

Yau Lai Estate, Bik Lai House
Davis Instruments
<u>Davis7440</u>
<u>MC01010A44</u>
<u>SA-03-04</u>
<u>21-Aug-2020</u>
<u>21-Feb-2021</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.2	2.3	-0.1
3.5	3.4	0.1

2. Performance check of Wind Direction

Wind Direction (°)		Difference D (°)	
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$	
0	0	0.0	
90	90	0.0	
180	180	0.0	
270	270	0.0	

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:	tol.	Approved by:	-long than
	Wong Shing Kwai		Henry Leung

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date o	f Calibration	5-Dec-20
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibra	tion Record	5-Feb-21
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3		
High Volume Sa	umpler No.: <u>A-01-01A</u>	Before Sensiti	vity Adjustment	735 CPM	
Tisch Calibration	n Orifice No.: 3607	After Sensitivi	ty Adjustment	735 CPM	

	Calibration of 1 l	ır TSP
Calibration	Laser Dust Monitor	HVS
Point	Mass Concentration (µg/m3)	Mass concentration (µg/m ³)
Tomt	X-axis	Y-axis
1	48.0	88.4
2	43.0	84.2
3	38.0	79.3
Average	43.0	84.0
By Linear Regre Slope , mw = _	0.9100 Inter	cept, bw = 44.8367
	<u>0.9100</u> Inter fficient* = <u>0.9990</u>	-
Slope , mw = Correlation coe	0.9100 Inter fficient* = 0.9990 Set Correlation 1	-
Slope , mw = Correlation coe	<u>0.9100</u> Inter fficient* = <u>0.9990</u>	Factor
Slope , mw = Correlation coe	0.9100Interofficient* =0.9990Set Correlation Ientration by High Volume Sampler ($\mu g/m^3$)entration by Dust Meter ($\mu g/m^3$)	Factor 84.0
Slope , mw = Correlation coe Particaulate Conce Particaulate Conce	0.9100 Inter efficient* = 0.9990 Set Correlation I entration by High Volume Sampler ($\mu g/m^3$) entration by Dust Meter ($\mu g/m^3$) (min)	Factor 84.0 43.0

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)