

RECALIBRATION DUE DATE:

January 17, 2021

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 17, 2020

Rootsmeter S/N: 438320

Ta: 295 **Pa:** 744.2

°K

Operator: Jim Tisch

mm Hg

Calibration Model #: TE-5025A

25A **Calibrator S/N: 3746**

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4340	3.2	2.00
2	3	4	1	1.0180	6.4	4.00
3	5	6	1	0.9080	7.9	5.00
4	7	8	1	0.8700	8.7	5.50
5	9	10	1	0.7150	12.6	8.00

Data Tabulation					
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)
0.9849	0.6868	1.4066	0.9957	0.6944	0.8904
0.9807	0.9633	1.9892	0.9914	0.9739	1.2592
0.9787	1.0779	2.2240	0.9894	1.0896	1.4078
0.9776	1.1237	2.3325	0.9883	1.1360	1.4765
0.9724	1.3601	2.8131	0.9831	1.3749	1.7808
	m=	2.09221		m=	1.31010
QSTD	b=	-0.02779	QA	b=	-0.01759
	r=	0.99994		r=	0.99994

Calculations				
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)	
Qstd=	Vstd/∆Time	Qa=	Va/ΔTime	
For subsequent flow rate calculations:				
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$	

Standard Conditions			
Tstd:	298.15 °K		
Pstd:	760 mm Hg		
Key			
ΔH: calibrator manometer reading (in H2O)			
ΔP: rootsmeter manometer reading (mm Hg)			
Ta: actual absolute temperature (°K)			
Pa: actual barometric pressure (mm Hg)			
b: intercept			
m· slone			

RECALIBRATION

US EPA recommends annual recalibration per 1998
40 Code of Federal Regulations Part 50 to 51,
Appendix B to Part 50, Reference Method for the
Determination of Suspended Particulate Matter in
the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

Cerificate of Calibration - Wind Monitoring Station

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: <u>MC01010A44</u>

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>21-Feb-2020</u>

Next Due Date <u>21-Aug-2020</u>

1. Performance check of Wind Speed

Wind Sp	peed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V1)	D = V1 - V2
0.0	0.0	0.0
1.2	1.3	-0.1
2.0	2.1	-0.1
3.0	3.2	-0.2

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (V1)	Marine Compass Value (V1)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by:		Approved by:	Lemy Xon	
	Wong Shing Kwai	_	Henry Leung	

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

8 May 2020

Date:

File No. MA20003/18/0002 Project No. CKL 1 - Flat 121 Cha Kwo Ling Village 8-May-20 Next Due Date: 8-Jul-20 Operator: SK Date: Equipment No.: ______ A-01-18 TE 5170 _____ Serial No. ____ 0723 Model No.: **Ambient Condition** 302.3 Temperature, Ta (K) Pressure, Pa (mmHg) 756.3 **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 17-Jan-20 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 2.90 1 12.7 3.53 60.09 8.6 2 9.3 3.02 51.48 6.0 2.43 4.7 7.1 2.64 45.04 2.15 3 2.12 3.1 1.74 4 4.6 36.35 5 3.0 1.72 29.44 1.9 1.37 By Linear Regression of Y on X Slope , mw = _____0.0492 Intercept, bw : -0.0725 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.26 Remarks: Conducted by: SK Wong Signature: 8 May 2020 Date:

Checked by: Henry Leung Signature:

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

8 May 2020

Date:

File No. MA20003/55/0002 Project No. CKL 2 - Flat 103 Cha Kwo Ling Village 8-May-20 Next Due Date: 8-Jul-20 Operator: SK Date: Equipment No.: A-01-55 TE 5170 1956 Serial No. Model No.: **Ambient Condition** 302.3 Temperature, Ta (K) Pressure, Pa (mmHg) 756.3 **Orifice Transfer Standard Information** Serial No. 3746 Slope, mc 0.0592 Intercept, bc -0.0274 mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ Last Calibration Date: 17-Jan-20 Qstd = $\{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} -bc \} / mc$ Next Calibration Date: 17-Jan-21 **Calibration of TSP Sampler** Orfice HVS Calibration ΔH (orifice), $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Qstd (CFM) ΔW (HVS), in. Point $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ in. of water X - axis of water Y-axis 7.3 1 12.7 3.53 60.09 2.68 2 9.9 3.12 53.10 6.0 2.43 7.2 2.66 45.36 4.4 2.08 3 4.3 3.3 1.80 4 2.05 35.16 5 2.6 1.60 27.44 2.3 1.50 By Linear Regression of Y on X Slope, mw = 0.0356Intercept, bw : 0.5214 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate. **Set Point Calculation** From the TSP Field Calibration Curve, take Qstd = 43 CFM From the Regression Equation, the "Y" value according to mw x Qstd + bw = $[\Delta W \times (Pa/760) \times (298/Ta)]^{1/2}$ Therefore, Set Point; W = $(mw \times Qstd + bw)^2 \times (760 / Pa) \times (Ta / 298) =$ 4.29 Remarks: 8 May 2020 Conducted by: SK Wong Signature: Date:

Checked by: Henry Leung Signature: