

MSA Hong Kong Ltd.

25/F Jupiter Tower, 9 Jupiter Street, Hong Kong Tel 852-22587588 Fax 25478780 Email info.hk@msasafety.com Website www.msasafety.com

Date: 22-May-20

Ref.2020/05/008CustomerLeighton China State Joint Venture

CERTIFICATE FOR CALIBRATION CHECK TEST

Model	Serial No.	Calibration Check Gas	Regulator	Full Scale	Response
		1.45% Methane,	1	100% LEL	29%LEL
		15% Oxygen		30% Vol	15% O2
Altair 5X	152097	60ppm Carbon Monoxide	.25litre/min	1999 ppm	60ppm CO
Anali JA	152097	20ppm Hydrogen Sulfide	1	200 ppm	20ppm H2S
		2.5% Carbon Dioxide	-l	10% Vol	2.5% CO2
		25ppm Ammonia	Demand	100 ppm	25ppm NH3

Remarks: Regular inspection completed. Calibration passed

MSA Hong Kong Ltd. certify that instrument/s listed above has/have been calibrated check tested on: 22-May-20

This instrument was calibrated in accordance with all requirements of the specifications of MSA.

This instrument must be calibration checked prior to use in accordance with the instruction manual.

This instrument was calibrated using NIST traceable equipment and was in accordance with all requirements of the drawings and specifications of MSA.

For and on behalf of MSA Hong Kong Ltd.

Authorised Signature

File No. MA16034/05/0028

Project No.	AM1 - Tin Hau	1 Temple				
Date:	10-]	Feb-21	Next Due Date:	10-Apr-21	Operator:	SK
Equipment No.:	A-	01-05	Model No.:	GS2310	Serial No.	10599
			Ambient Condit	ion		
Temperatu	ıre, Ta (K)	289.5	Pressure, Pa (mml	Hg)	760	

Orifice Transfer Standard Information								
Serial No.	Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	11-Jan-21	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}			
Next Calibration Date:	11-Jan-22		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc			

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (I	Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	13.0	3.66	62.63	8.7		2.99
2	9.4	3.11	53.26	6.4		2.57
3	7.5	2.78	47.58	4.8		2.22
4	4.8	2.22	38.08	3.1		1.79
5	2.5	1.60	27.49	1.9		1.40
	coefficient* =	0, check and recalibrate.	Intercept, bw	.080	7	_
		Set Point C	alculation			
		urve, take Qstd = 43 CFM				
	-	e "Y" value according to mw x Qstd + bw = [ΔW x v x Qstd + bw)² x (760 / Pa) x (98/Ta)] ^{1/2}		_
Remarks: Conducted by:	SK Wong	Signature:			Date:	10 February 2021
·				-		
Checked by:	Henry Leung	Signature: \-lemp	Log		Date:	10 February 2021

 \uparrow

1

Temperature, Ta (K)

289.5

760

File No. MA16034/08/0028

Project No.	AM2 - Sai Tso Wan Recreat	tion Ground				
Date:	10-Feb-21	Next Due Date:	10-Apr-21	Operator:	SK	
Equipment No.:	A-01-08	Model No.:	GS2310	Serial No.	1287	
		Ambient Condi	ion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	11-Jan-21	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	11-Jan-22		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc		

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.0	3.66	62.63	8.8		3.01
2	9.9	3.19	54.66	6.2		2.53
3	7.8	2.83	48.52	4.8		2.22
4	4.9	2.25	38.47	3.1		1.79
5	2.9	1.73	29.61	1.9		1.40
Slope , mw = Correlation	coefficient* =		Intercept, bw = -	-0.056	52	_
From the TSD Fi	ald Calibration C	Set Point C urve, take Qstd = 43 CFM	alculation			
		e "Y" value according to				
Therefore, Se	et Point; W = (my	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ $\mathbf{v} \mathbf{x} \mathbf{Qstd} + \mathbf{bw}^{2} \mathbf{x} (760 / Pa) \mathbf{x} (760 / Pa)$		98/Ta)] ^{1/2} 		_
Remarks:						
Conducted by:	SK Wong	Signature:			Date:	10 February 2021
Checked by:	Henry Leung	Signature:	Xnor		Date:	10 February 2021

T

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20210210_AM2_(A-01-08).xls

289.5

Temperature, Ta (K)

760

Date:

10 February 2021

File No. MA16034/03/0028

Project No.	AM3 - Yau Lai Estate, Bik I	Lai House				
Date:	10-Feb-21	Next Due Date:	10-Apr-21	Operator:	SK	
Equipment No.:	A-01-03	Model No.:	GS2310	Serial No.	10379	
		Ambient Condit	tion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	11-Jan-21	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	11-Jan-22		$Qstd = \{ [\Delta H x]$	(Pa/760) x (298/Ta)] ^{1/2} -bc} /	mc		

	Calibration of TSP Sampler							
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$			
1	12.9	3.64	62.39	8.7	2.99			
2	9.6	3.14	53.83	6.5	2.59			
3	7.8	2.83	48.52	5.3	2.34			
4	5.2	2.31	39.63	3.4	1.87			
5	2.6	1.64	28.04	2.0	1.43			
By Linear Regression of Y on X Slope , mw =0.0462 Intercept, bw =0.0975								
Correlation coefficient* = 0.9984								
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point C	alculation					
		urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}				
Therefore, Se	et Point; W = (mv	$(x + y + y)^{2} x (760 / Pa) x (760 / Pa)$	Ta / 298) =	4.21				
Remarks:								
Conducted by:	SK Wong	Signature:			Date: 10 February 2021			

leng drang

Signature:

Checked by: Henry Leung

289.5

Temperature, Ta (K)

760

File No. MA16034/54/0028

Project No.	AM4(A) - Cha Kwo Ling Pu	blic Cargo Working Area A	dministrative Office		
Date:	10-Feb-21	Next Due Date:	10-Apr-21	Operator:	SK
Equipment No.:	A-01-54	Model No.:	TE-5170	Serial No.	1536
		Ambient Condit	ion		

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	11-Jan-21	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	11-Jan-22		$Qstd = \{ [\Delta H x] \}$	$(Pa/760) \ge (298/Ta)]^{1/2} -bc\} /$	mc		

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	² a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.1	3.67	62.87	8.9		3.03
2	9.9	3.19	54.66	6.4		2.57
3	7.5	2.78	47.58	5.0		2.27
4	5.4	2.36	40.38	3.3		1.84
5	3.0	1.76	30.11	1.9		1.40
If Correlation (Coefficient < 0.99), check and recalibrate.				
		Set Point C	alculation			
From the TSP Fi	ield Calibration C	urve, take Qstd = 43 CFM				
From the Regres	sion Equation, the	e "Y" value according to				
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (29	98/Ta)1 ^{1/2}		
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	3.95		_
Remarks:						
Cillarks.						
		ا م ۱				
Conducted by:	SK Wong	Signature:	<u>, '</u>		Date:	10 February 202
		<i>b</i> -				

(mon 1

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20210210_AM4(A)_(A-01-54).xls

File No. MA16034/05/0029

Project No.	AM1 - Tin Hau	ı Temple					
Date:	10-2	Apr-21	Next Due Date:	10-Jun-21	Operator:	SK	
Equipment No.:	A-	01-05	Model No.:	GS2310	Serial No.	10599	
			Ambient Condit	ion			
Temperatu	ıre, Ta (K)	292.8	Pressure, Pa (mml	Hg)	764.9		

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	Last Calibration Date: 11-Jan-21 $\operatorname{mc} x \operatorname{Qstd} + \operatorname{bc} = [\Delta H \times (\operatorname{Pa}/760) \times (298/\operatorname{Ta})]^{1/2}$						
Next Calibration Date:							

		Calibration of	TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$
1	13.0	3.65	62.47	8.9	3.02
2	9.4	3.10	53.13	6.4	2.56
3	7.5	2.77	47.47	4.8	2.22
4	4.8	2.22	37.98	3.1	1.78
5	2.5	1.60	27.43	1.9	1.40
Slope , mw = Correlation	ression of Y on X 0.0469 coefficient* =	0.9965	Intercept, bw = -	0.051	6
*If Correlation C	Coefficient < 0.990	0, check and recalibrate.			
From the TSD Fi	ald Calibration C	Set Point C urve, take Qstd = 43 CFM	alculation		
From the Regres	sion Equation, the	e "Y" value according to		1/2	
		$\mathbf{mw} \ge \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ge \mathbf{w}]$	(Pa/760) X (29	98/1a)]	
Therefore, Se	et Point; W = (my	$(x + y)^{2} x (760 / Pa) x (760 / Pa)$	Ta / 298) =	4.18	
Remarks:					
Conducted by:	SK Wong	Signature:	,		Date: 10 April 2021
Checked by:	Henry Leung	Signature:	~~~7		Date: 10 April 2021

T

J

292.8

Temperature, Ta (K)

764.9

File No. MA16034/08/0029

Project No.	AM2 - Sai Tso Wan Recreat	tion Ground				
Date:	10-Apr-21	Next Due Date:	10-Jun-21	Operator:	SK	
Equipment No.:	A-01-08	Model No.:	GS2310	Serial No.	1287	
		Ambient Condit	ion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	alibration Date: 11-Jan-21 $mc x Qstd + bc = [\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:							

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (P	² a/760) x (298/Ta)] ^{1/2} Y-axis
1	13.1	3.66	62.71	8.8		3.00
2	9.9	3.18	54.53	6.2		2.52
3	7.8	2.83	48.40	4.8		2.22
4	4.9	2.24	38.38	3.2		1.81
5	2.9	1.72	29.54	1.9		1.40
	coefficient* =	0.9974 0, check and recalibrate.	Intercept, bw -	-0.024	18	_
		Set Point C	alculation			
		urve, take Qstd = 43 CFM				
		w x Qstd + bw $= [\Delta W x$ w x Qstd + bw $)^2$ x (760 / Pa) x (· · · ·	98/Ta)] ^{1/2} 3.96		_
Remarks:						
Conducted by:	SK Wong	Signature:	-		Date:	10 April 2021
Checked by:	Henry Leung	Signature:	Xon		Date:	10 April 2021

1

J

292.8

Temperature, Ta (K)

764.9

File No. MA16034/03/0029

Project No.	AM3 - Yau Lai Estate, Bik	Lai House				
Date:	10-Apr-21	Next Due Date:	10-Jun-21	Operator:	SK	
Equipment No.:	A-01-03	Model No.:	GS2310	Serial No.	10379	
		Ambient Condit	tion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	Last Calibration Date: 11-Jan-21 $\operatorname{mc x Qstd} + \operatorname{bc} = [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$						
Next Calibration Date:							

		Calibration of	TSP Sampler			
Calibration		Orfice			HVS	
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa	/760) x (298/Ta)] ^{1/2} Y-axis
1	13.0	3.65	62.47	8.7		2.99
2	9.6	3.14	53.69	6.5		2.58
3	7.8	2.83	48.40	5.3		2.33
4	5.2	2.31	39.53	3.5		1.89
5	2.6	1.63	27.97	2.0		1.42
	coefficient* =	0.9993 0, check and recalibrate.	Intercept, bw - -	0.124	4	
		Set Point C	alculation			
		urve, take Qstd = 43 CFM				
		e "Y" value according to mw x Qstd + bw = [ΔW y				
Therefore, So	et Point; w – (mv	w x Qstd + bw) ² x (760 / Pa) x (14 / 298) -	4.25		
Remarks:						
Conducted by:	SK Wong	Signature:			Date:	10 April 2021
Checked by:	Henry Leung	Signature:	Xon		Date:	10 April 2021

7

1

292.8

Temperature, Ta (K)

CIN@TECH

764.9

File No. MA16034/54/0029

Project No.	AM4(A) - Cha Kwo Ling Pu					
Date:	10-Apr-21	Next Due Date:	10-Jun-21	Operator:	SK	
Equipment No.:	A-01-54	Model No.:	TE-5170	Serial No.	1536	
		Ambient Condit	ion			

Pressure, Pa (mmHg)

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05846 Intercept, bc -0.00313							
Last Calibration Date:	libration Date: 11-Jan-21 $mc x Qstd + bc = [\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:							

		Calibration of	TSP Sampler		
Calibration		Orfice			HVS
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/760) x (298/Ta)] ^{1/2} Y-axis
1	13.2	3.68	62.95	8.9	3.02
2	9.9	3.18	54.53	6.4	2.56
3	7.5	2.77	47.47	5.0	2.26
4	5.3	2.33	39.91	3.3	1.84
5	3.0	1.75	30.04	1.9	1.40
If Correlation (Coefficient < 0.99	0, check and recalibrate.	-11-4		
		Set Point C	algulation		
From the TSP F	ield Calibration C	urve, take Qstd = 43 CFM			
		e "Y" value according to			
	,,,	mw x Qstd + bw = $[\Delta W]$	x (Po/760) x (2)	(12) $(1/2)$	
		-			
Therefore, Se	et Point; W = (mv	$(x + y + y)^{2} x (760 / Pa) x ($	Ta / 298) =	3.98	
Remarks:					
Cemarks.					
Conducted by:	SK Wong	Signature:			Date: 10 April 2021
Checked by:	Henry Leung	Signature:	Xor	-	Date: 10 April 2021

7

F:\Cinotech Solutions\Equipment\Calibration Cert\HVS\new\MA16034_20210410_AM4(A)_(A-01-54).xls

0024993

Customer :		Object 1 : BSWA 308 SLM
Cinotech Consultants Limited		Serial No. /Ref. No. : 570183 / 550233
RM 1710, Technology Park,		Object 2 :
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :
Hong Kong		
Customer Code : SVEC09005		Manufacturer : BSWAtech
Date of calibration:	07/10/2020	Certificate No.: 0024993
Date of the recommended re-calibration:	07/10/2021	Handle by: E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	93.4dB	-0.6dB	+/- 1.5dB	1
114.0dB	113.2dB	-0.8dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Appleone Calibration Laboratory Ltd.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. 5 The calibrations certificate may not be reproduced

5. The calibrations certificate may not be reproduced.

Measured value(s) within the allowable deviation.

Performed by
Calibration Technician Mr. K.L. Ng

Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR Tel: +852 2370 4437 Fax: +852 2114 0393

0024995

Customer :		Object 1 : BSWA 308 SLM	
Cinotech Consultants Limited		Serial No. /Ref. No. : 570187 / 550841	
RM 1710, Technology Park,		Object 2 :	
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No.	
Hong Kong			
Customer Code : SVEC09005		Manufacturer : BSWAtech	
Date of calibration:	07/10/2020	Certificate No.: 0024995	
Date of the recommended re-calibration:	07/10/2021	Handle by: E0002	

Measuring results

	Reference value	Indication value	Deviation	Allowed deviation	Object
Γ	94.0dB	93.1dB	-0.9dB	+/- 1.5dB	1
ſ	114.0dB	113.1dB	-0.9dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. 5. The calibrations certificate may not be reproduced.

Measured value(s)

Calibration Technician

the allowable deviation.

Performed by

Approved by

Mr. K.S. Ng

Quality Manager

Appleone Calibration Laboratory Ltd. Rm1309, 13/F, No.77 Wing Hong St, KIn, HKSAR

Mr. K.L. Ng

Tel: +852 2370 4437 Fax: +852 2114 0393

0024996

Customer :		Object 1 : BSWA 308 SLM	
Cinotech Consultants Limited		Serial No. /Ref. No. : 570188 / 550850	
RM 1710, Technology Park,		Object 2 :	
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :	
Hong Kong			
Customer Code : SVEC09005		Manufacturer : BSWAtech	
Date of calibration:	07/10/2020	Certificate No.: 0024996	
Date of the recommended re-calibration:	07/10/2021	Handle by: E0002	

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	92.9dB	-1.1dB	+/- 1.5dB	1
114.0dB	112.8dB	-1.2dB	+/- 1.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949, sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Calibrator with Master Sound Level Meter under 1kHz Frequency.

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.

5. The calibrations certificate may not be reproduced.				
Measured value(s) within	the allowable deviation.			
Performed by		Approved by		
le/5		Mr. K.S. Ng		
Calibration Technician	Mr. K.L. Ng	Quality Manager		
Appleone Calibration Laboratory Ltd.	Rm1309, 13/F, No.77 Wing Hong St	i, Kin, HKSAR Tel: +852 2370 4437 Fax: +852 2114 0393		

0025247

Customer :		Object 1 :	ST-120 sound calibrator
Cinotech Consultants Limited		Serial No. /Ref. No. :	181001608
RM 1710, Technology Park,		Object 2 :	
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :	
Hong Kong	Hong Kong		
Customer Code : SVEC09005		Manufacturer : Sour	ndtek
Date of calibration:	05/11/2020	Certificate No .:	0025247
Date of the recommended re-calibration:	05/11/2021	Handle by:	E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	93.7dB	-0.3dB	+/- 0.3dB	1
114.0dB	113.6dB	-0.4dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability	
1	Master Sound Meter, SVAN949, sn:8571	IEC61672	
2	Sound Calibrator, SV30A sn:32580	IEC60942	

Ambient conditions

Temperature (20...26)°C Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source -

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.

5. The calibrations certificate may not be reproduced.

Measured value(s)	within the	e allowable deviation		
Performed by	1		Approved	ьу
	at		L	~ ``
Calibration Technicia	an	Mr. K.L. Ng	Quality Ma	nager
Appleone Calibration Lat	poratory Ltd. Rm	1309, 13/F, No.77 Wing Hor	ng St, Kln, HKSAR	Tel: +852 2370 4437 Fax: +852 2114 0393

0025249

Customer : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T. Hong Kong		Object 1 : Serial No. /Ref. No. : Object 2 : Serial No. /Ref. No. :	ST-120 sound calibrator 181001636
Customer Code : SVEC09005 Date of calibration: 0)5/11/2020)5/11/2021	Manufacturer : Sour Certificate No.: Handle by:	ndtek 0025249 E0002

Measuring results

Reference value	Indication value	Deviation	Allowed deviation	Object
94.0dB	93.7dB	-0.3dB	+/- 0.3dB	1
114.0dB	113.6dB	-0.4dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	Master Sound Meter, SVAN949,sn:8571	IEC61672
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source ...

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories.

5. The calibrations certificate may not be reproduced.

Measured value(s) within	the allowable deviation.	
Performed by		Approved by
lab		L
Calibration Technician	Mr. K.L. Ng	Quality Manager
Appleone Calibration Laboratory Ltd.	Rm1309, 13/F, No.77 Wing Hong S	t, KIn, HKSAR Tel: +852 2370 4437 Fax: +852 2114 0393

0025248

Customer :		Object 1 :	ST-120 sound calibrator
Cinotech Consultants Limited		Serial No. /Ref. No. :	181001637
RM 1710, Technology Park,		Object 2 :	
18 On Lai Street, Shatin, N.T.		Serial No. /Ref. No. :	
Hong Kong			
Customer Code : SVEC09005		Manufacturer : Sou	ndtek
Date of calibration:	05/11/2020	Certificate No .:	0025248
Date of the recommended re-calibration:	05/11/2021	Handle by:	E0002

Measuring results

	Reference value	Indication value	Deviation	Allowed deviation	Object
Γ	94.0dB	93.8dB	-0.2dB	+/- 0.3dB	1
	114.0dB	113.6dB	-0.4dB	+/- 0.5dB	1

Measuring equipment

index	Calibrator / Master	Traceability
1	1 Master Sound Meter, SVAN949,sn:8571	
2	Sound Calibrator, SV30A sn:32580	IEC60942

Ambient conditions

Temperature (20...26)°C

Humidity (20...60)%RH

Measuring procedure

Calibrated by Type 1 Sound Level Meter and 1kHz Sound Source .

Uncertainty

+/- 0.2 dB for probability not less than 95%.

Conformity

1. The resulted values were those obtained at the time of test and applies only to the item calibrated.

2. The measurement uncertainty was calculated according to the regulations of GUM with the coverage factor k=2 and contains

the uncertainty of the measuring procedure and the uncertainty of the measuring system.

3. The equipment being used in this calibration are regularly calibrated by laboratory according to ISO/IEC17025.

4.HKAS has accredited this laboratory (HOKLAS 267) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. 5.The calibrations certificate may not be reproduced.

 Measured value(s) within
 the allowable deviation.

 Performed by
 Approved by

 Calibration Technician
 Mr. K.L. Ng

 Appleone Calibration Laboratory Ltd.
 Rm1309, 13/F, No.77 Wing Hong St, Kln, HKSAR

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description: Digital Dust Indicator			Date of Calibration 1-Apr-21		1-Apr-21
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibi	Validity of Calibration Record 1-Jun-2	
Model No.:	LD-5R				
Serial No.:	8Y2374				
Equipment No.:	SA-01-04	Sensitivity	0.001 mg/m3	-	
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	652	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ity Adjustment	652	
	Ca	alibration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (μg/ X-axis	/m3)	Mas	ss concentration (µ Y-axis	g/m ³)
1	54.0			108.0	
2	49.0			103.0	
3	43.0			96.0	
Average	48.7			102.3	
By Linear Regi Slope , mw = Correlation co			cept, bw =	49.1209	
		et Correlation F	actor		
Particaulate Concentration by High Volume Sampler ($\mu g/m^3$)			102.3		
Particaulate Concentration by Dust Meter ($\mu g/m^3$)			48.7		
Measureing time	Measureing time, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	ıg/m3)]	2.1	<u> </u>	

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: Wong Shing Kwai

Approved by: <u>leng</u> Kong Henry Leung

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description: Digital Dust Indicator		Date of Calibration 1-Apr-2		1-Apr-21	
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibi	ration Record	1-Jun-21
Model No.:	LD-5R				
Serial No.:	8Y2373				
Equipment No.:	: <u>SA-01-05</u>	Sensitivity	0.001 mg/m3	-	
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	657	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ity Adjustment	657	
	Ca	alibration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (μg/ X-axis	/m3)	Mas	ss concentration (μ Y-axis	g/m ³)
1	51.0			108.0	
2	46.0		<u> </u>	103.0	
3	40.0			96.0	
Average	45.7			102.3	
By Linear Reg Slope , mw = Correlation c			cept, bw =	52.4011	
	St	et Correlation F	actor		
Particaulate Concentration by High Volume Sampler ($\mu g/m^3$)			102.3		
Particaulate Concentration by Dust Meter ($\mu g/m^3$)			45.7		
Measureing time	Measureing time, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	gh Volume Sampler / Dust Meter, (μ	ıg/m3)]	2.2		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-21	
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibration Record		1-Jun-21	
Model No.:	LD-5R					
Serial No.:	972778					
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3	_		
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	735 CPM		
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivi	ity Adjustment	735 CPM		
	Ca	llibration of 1 h	r TSP			
Calibration	Laser Dust Monitor	r		HVS		
Point	Mass Concentration (µg/ X-axis	′m3)	Mass concentration (µg/m ³) Y-axis			
1	52.0		108.0			
2	48.0			103.0		
3	41.0			96.0		
Average	47.0			102.3		
By Linear Regression of Y on X Slope , mw = <u>1.0806</u> Correlation coefficient* = <u>0.9982</u>			cept, bw = -	51.5430		
Set Correlation Factor						
Particaulate Concentration by High Volume Sampler ($\mu g/m^3$)			102.3			
Particaulate Concentration by Dust Meter (µg/m ³)			47.0			
Measureing time, (min)				60.0		
Set Correlation I	Set Correlation Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]			2.2			

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: _________ Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-21	
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibration Record		1-Jun-21	
Model No.:	LD-5R					
Serial No.:	972779					
Equipment No.:	SA-01-08	Sensitivity	0.001 mg/m3	-		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	744 CPM		
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivi	vity Adjustment 744 CPM			
	Ca	libration of 1 h	r TSP			
Calibration	Laser Dust Monitor	r		HVS		
Point	Mass Concentration (µg/ X-axis	′m3)	Mass concentration (µg/m ³) Y-axis		.g/m ³)	
1	54.0		108.0			
2	49.0		103.0			
3	43.0			96.0		
Average	48.7		102.3			
By Linear Regression of Y on X Slope , mw = <u>1.0934</u> Inter Correlation coefficient* = <u>0.9991</u>		cept, bw =	49.1209			
Set Correlation Factor						
Particaulate Concentration by High Volume Sampler ($\mu g/m^3$)			102.3			
Particaulate Concentration by Dust Meter ($\mu g/m^3$)			48.7			
Measureing time, (min)				60.0		
	Set Correlation Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]			2.1			

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Approved by: <u>lemy Xany</u> Henry Leung

Calibrated by: Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of Calibration		1-Apr-21	
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibration Record		1-Jun-21	
Model No.:	LD-5R					
Serial No.:	972780					
Equipment No.:	SA-01-09	Sensitivity	0.001 mg/m3	-		
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	739 CPM		
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	sitivity Adjustment 739 CPM			
	Ca	libration of 1 h	r TSP			
Calibration	Laser Dust Monitor	r		HVS		
Point	Mass Concentration (µg/ X-axis	′m3)	Mass concentration (µg/m ³) Y-axis		g/m ³)	
1	51.0		108.0			
2	46.0			103.0		
3	42.0			96.0		
Average	46.3			102.3		
By Linear Regression of Y on X Slope , mw = <u>1.3197</u> Inter Correlation coefficient* = <u>0.9872</u>			cept, bw = -	41.1885		
Set Correlation Factor						
Particaulate Concentration by High Volume Sampler ($\mu g/m^3$)			102.3			
Particaulate Concentration by Dust Meter (µg/m ³)			46.3			
Measureing time, (min)				60.0		
	Set Correlation Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (μg/m3)]			2.2			

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: _________ Wong Shing Kwai

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of Calibration		1-Apr-21	
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibration Record		1-Jun-21	
Model No.:	LD-5R					
Serial No.:	972781					
Equipment No.:	SA-01-10	Sensitivity	0.001 mg/m3	_		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	734 CPM		
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitivi	Sensitivity Adjustment 734 CPM			
	Ca	libration of 1 h	r TSP			
Calibration	Laser Dust Monitor	r		HVS		
Point	Mass Concentration (µg/	/m3)	Mas	ss concentration (µ	g/m ³)	
	X-axis		Y-axis			
1	60.0		108.0			
2	52.0		103.0			
3	41.0		96.0			
Average	51.0		102.3			
•	ression of Y on X	-				
- /	0.6319		cept, bw =	70.1081		
Correlation co	Defficient* = 1.0000					
Set Correlation Factor						
Particaulate Concentration by High Volume Sampler (µg/m ³)			102.3			
Particaulate Concentration by Dust Meter (µg/m ³)			51.0			
Measureing time, (min)				60.0		
Set Correlation	Set Correlation Factor, SCF					
SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]		2.0				

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: _______ Wong Shing Kwai

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	January 11	I, 2021 Rootsmeter S/N: 438320		438320	Ta: 297		°К	
Operator:	Jim Tisch					Pa:	750.1	mm Hg
Calibration Model #: TE-5025A Calibrator S/N: 3864								
								1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4470	3.2	2.00	
	2	3	4	1	1.0210	6.4	4.00	
	3	5	6	1	0.9140	8.0	5.00	
	4	<u>7</u>	8 10	1	0.8670	8.8	5.50 8.00	
	5	9	10	1	0.7140	12.9	8.00]
				Data Tabula	tion			
			// Pa	V Tstd \				
	Vstd	Qstd	√ ^{∆H} (<u>Pstd</u>)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9860	0.6814	1.40		0.9957	0.6881	0.8899	
	0.9818	0.9616	1.990	02	0.9915	0.9711	1.2585	1
	0.9797	1.0719	2.22!		0.9893	1.0824	1.4071	
	0.9786	1.1288	2.333		0.9883	1.1399	1.4757	
	0.9732	1.3630	2.814		0.9828	1.3765	the state of the s	
		<u>m=</u>	2.065			m=	1.29348	
	QSTD	b=	0.003		QA	b=	0.00199	
		r= 0.99996		90		r=	0.99996	1
		Calculations						
		std= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)		a)	Va= ΔVol((Pa-ΔP)/Pa)			
	Qstd=	Vstd/∆Time			Qa= Va/ΔTime			
		For subsequent flow rate calculations:						
	Qstd=	Qstd= $1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$			Qa=	$1/m\left(\sqrt{\Delta H}\right)$	H(Ta/Pa))-b)	
	Standard	Conditions	1					
Tstd	Tstd: 298.15 °K					RECA	LIBRATION	
Pstd	Pstd: 760 mm Hg						named an and the set	400
A11		(ey	- 1120)				nnual recalibrations	-
		ter reading (i eter reading			40 Code of Federal Regulations Part 50 to 51,			
		perature (°K)			Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in			
		ressure (mm				1	ended Particulat ere, 9.2.17, page	
b: intercept	the second s	,	0.		th	e Aunosphe	sie, 3.2.17, page	50
m: slope								

isch Environmental, Inc. 45 South Miami Avenue illage of Cleves, OH 45002 <u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Certificate of Calibration - Wind Monitoring Station

Yau Lai Estate, Bik Lai House
Davis Instruments
<u>Davis7440</u>
<u>MC01010A44</u>
<u>SA-03-04</u>
<u>20-Feb-2021</u>
<u>20-Aug-2021</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.6	-0.1
2.5	2.5	0.0
3.5	3.4	0.1

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction