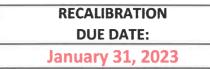


Certificate of Calibration - Wind Monitoring Station

Description:	Yau Lai Estate, Bik Lai House
Manufacturer:	Davis Instruments
Model No.:	<u>Davis7440</u>
Serial No.:	<u>MC01010A44</u>
Equipment No.:	<u>SA-03-04</u>
Date of Calibration	<u>19-Feb-2022</u>
Next Due Date	<u>19-Aug-2022</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.5	2.5	0.0
4.2	4.3	-0.1


2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Certificate of Calibration

			Calibration	Certificatio	on Informat	ion		
Cal. Date:	January 31, 2022 Roots			meter S/N:	438320	438320 Ta: 294 °K		°K
Operator:	Jim Tisch					Pa:	752.6	mm Hg
Calibration	Model #:	TE-5025A	Calik	prator S/N:	3864			0
								1
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4490	3.2	2.00	
	2	3	4	1	1.0320	6.4	4.00	
	3	5	6	1	0.9160	7.9	5.00	
	5	7	8	1	0.8730	8.8	5.50 8.00	
		9				1.2.7	8.00]
	L			Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H (Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9995	0.6898	1.416		0.9957	0.6872	0.8839	
	0.9952	0.9643	2.003		0.9915	0.9608	1.2500	
	0.9932	1.0843	2.240		0.9895	1.0802	1.3976	
	0.9920	1.1363	2.349		0.9883	1.1321	1.4658	
	0.9868	1.3649	2.833		0.9831	1.3598	1.7678	
		m=					1.31048	
	QSTD		-0.024 0.999		QA	b= r=	-0.01514	
		r= 0.9					0.99993	I
				Calculatio				
		Vstd= ΔVol((Pa-ΔP)/Pstd)(Tstd/T				ΔVol((Pa-Δ	P)/Pa)	
	Qstd=	Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow ra	te calculatio	ns:		
	Qstd= $1/m \left(\sqrt{\Delta H \left(\frac{Pa}{Pstd} \right) \left(\frac{Tstd}{Ta} \right)} \right)$)-ь)	Qa=	1/m ((√∆H	I(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:	d: 298.15 °K					RECA	LIBRATION	
Pstd: 760 mm Hg					LIS EDA room	mmonde	nnual recalibratio	on ner 1000
Key				US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51,				
ΔH: calibrator manometer reading (in H2O) ΔP: rootsmeter manometer reading (mm Hg)								
		perature (°K)			Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter i			
		ressure (mm					erided Particulation erided Particulation erided Particulation erided eride	
b: intercept					LTI(e Aunosphe	sie, 3.2.17, page	50
m: slope								

isch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

www.tisch-env.com TOLL FREE: (877)263-7610 FAX: (513)467-9009

CINOTECH CONSULTANTS LIMITED

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of Calibration 29-Mar-2		29-Mar-22
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	29-May-22
Model No.:	LD-5R				
Serial No.:	972781				
Equipment No.:	SA-01-10	Sensitivity	0.001 mg/m3	-	
High Volume Sa	mpler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	734 CPM	
Tisch Calibration	n Orifice No.: <u>3864</u>	After Sensitivi	ty Adjustment	734 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	•		HVS	
Point	Mass Concentration (µg/: X-axis	m3)	Mass concentration ($\mu g/m^3$)		
			Y-axis		
l	74.0			152.0	
2	63.5		133.0		
3	48.0			109.0	
Average	61.8		131.3		
By Linear Regr Slope , mw =	ression of Y on X 1.6459	Intero	cept, bw =	29.562	8
Correlation co			r -)		
	Se	t Correlation F	actor		
Particaulate Concentration by High Volume Sampler (µg/m ³)			131.3		
Particaulate Concentration by Dust Meter ($\mu g/m^3$)			61.8		
Measureing time, (min)			60.0		

Set Correlation Factor, SCF

SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Cany Chang Project Manager (Henry Leung)

Technical Officer (Wong Shing Kwai)

2.1

CINOTECH CONSULTANTS LIMITED

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date	of Calibration	29-Mar-22	
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibi	ration Record	29-May-22
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	735 CPM	
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitivit	ty Adjustment	735 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	•		HVS	
Point	Mass Concentration (µg/	(m3)	Mass concentration ($\mu g/m^3$)		
	X-axis			Y-axis	
1	72.0			152.0	
2	63.0			133.0	
3	54.0			109.0	
Average	63.0		131.3		
By Linear Regression of Y on X Slope , mw = <u>2.3889</u> Intercept, bw = <u>-19.1667</u> Correlation coefficient* = 0.9978					
	encient – <u>0.0078</u>				
	Se	t Correlation Fa	actor		
Particaulate Con	ncentration by High Volume Sampler ($(\mu g/m^3)$	131.3		
Particaulate Concentration by Dust Meter ($\mu g/m^3$)			63.0		

Set Correlation Factor, SCF

Measureing time, (min)

SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by:

Technical Officer (Wong Shing Kwai)

Project Manager (Henry Leung)

60.0

2.1

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00150

Issue Date : 16 Nov 2021

Application No. : HP00032 **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Sound Level Calibrator. Equipment No.: : N-13-01 Manufacturer: : SOUNDTEK Other information : Model No. ST-120 Serial No. 181001608 : 05 Nov 2021 Date Received Test Period : 08 Nov 2021 to 12 Nov 2021 : Performance checking for Sound Level Calibrator **Test Requested** Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent. **Test conditions** : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%

Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

S

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 16 Nov 2021

Report No.:00150Application No.:HP00032

Certificate of Calibration

Measuring equipment

Sound Calibrator
Brüel & Kjær
TYPE 4231
2326353
N-02-01
Sound Meter
BSWA Technology
BSWA 308
570188
570608
N-12-03

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 0.3
114.0	114.0	0.0	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
 - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00168

Issue Date : 25 Jan 2022

: HP00044 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. **Equipment No.:** : N-08-11 Manufacturer: : SVANTEK Other information : Model No. SVAN 957 Serial No. 23852 Microphone No. 22454 Data Racaivad 20 Jan 2022

Date Received	:	20 Jan 2022
Test Period	:	21 Jan 2022 to 21 Jan 2022
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

: 1. Information of the sample description provided by the Applicant. Remark

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 25 Jan 2022

Report No.:00168Application No.:HP00044

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+0.1	± 1.5
114.0	114.2	+0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00160

Issue Date : 10 Jan 2022

: HP00040 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. **Equipment No.:** : N-08-07 Manufacturer: : SVANTEK Other information : Model No. SVAN 957 Serial No. 21455 Microphone No. 22391

Date Received	:	03 Jan 2022
Test Period	:	10 Jan 2022 to 10 Jan 2022
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

: 1. Information of the sample description provided by the Applicant. Remark

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 10 Jan 2022

Report No.:00160Application No.:HP00040

Certificate of Calibration

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0 93.9		-0.1	± 1.5
114.0	113.8	-0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

.

File No. MA16034/54/0035

Project No.	AM4(A) - Cha							
Date:	9-4	Apr-22	Next Due Date:	9-Jun-22	Operator:	SK		
Equipment No.:	Equipment No.: A-01-54		Model No.:	TE-5170	Serial No.	1536		
			Ambient Conditi	ion				
Temperatu	ure, Ta (K)	296.1	Pressure, Pa (mmH	-Ig)	760			
Orifice Transfer Standard Information								

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420			
Last Calibration Date:	31-Jan-22	I	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler									
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	13.0	3.62	61.49	9.4	3.08				
2	10.6	3.27	55.56	7.4	2.73				
3	7.6	2.77	47.11	5.2	2.29				
4	5.6	2.37	40.50	3.4	1.85				
5	3.0	1.74	29.75	2.0	1.42				
By Linear Regression of Y on X Slope , mw =									
		Set Point Ca urve, take Qstd = 43 CFM e "Y" value according to	alculation						
$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =									
	Wong Shi	ng Kwai Signature: Leung Signature:		N. Janj-	Date: <u>9-Apr-22</u> Date: <u>9-Apr-22</u>				

File No. MA16034/03/0035

Project No.	AM3 - Yau La	i Estate, Bik Lai	House			
Date:	9-A	Apr-22	Next Due Date:	9-Jun-22	Operator:	SK
Equipment No.: A-0		01-03	Model No.:	GS2310	Serial No.	10379
			Ambient Condit	ion		
Temperatu	ure, Ta (K)	296.1	Pressure, Pa (mmI	Hg)	760	
			-			

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420			
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler									
Calibration		Orfice			HVS				
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis				
1	13.2	3.64	61.96	9.4	3.08				
2	10.4	3.24	55.04	7.0	2.65				
3	8.4	2.91	49.51	5.6	2.37				
4	5.4	2.33	39.77	3.4	1.85				
5	3.0	1.74	29.75	2.0	1.41				
By Linear Regression of Y on X Slope , mw = 0.0516 Intercept, bw = -0.1629									
Correlation	coefficient* =	0.9983							
*If Correlation C	Coefficient < 0.99	0, check and recalibrate.	_						
		Set Point C	alculation						
From the TSP Fi	eld Calibration C	urve, take Qstd = 43 CFM							
From the Regres	sion Equation, the	e "Y" value according to							
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\mathbf{\Delta}\mathbf{W}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}					
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	4.20					
Remarks:									
Conducted by:	Wong Shi	ng Kwai Signature:	K	火	Date: 9-Apr-22				
Checked by:	Henry I	Leung Signature:	-lem	J	Date: 9-Apr-22				

File No. MA16034/08/0035

Project No.	AM2 - Sai Tso	Wan Recreation	Ground				
Date:	9-A	pr-22	Next Due Date:	9-Jun-22		Operator:	SK
Equipment No.:	A-()1-08	Model No.:	GS	52310	Serial No.	1287
			Ambient C	ondition			
Temperatu	re, Ta (K)	296.1	Pressure, Pa	(mmHg)		760	
			fice Transfer Star		ation		
Seria		3864	Slope, mc	0.05922	Intercept		-0.02420
Last Calibra		31-Jan-22			$\mathbf{c} = [\Delta \mathbf{H} \mathbf{x} (\mathbf{Pa}/760)]$		
Next Calibr	ation Date:	31-Jan-23	•	Q std = {[$\Delta H x$	(Pa/760) x (298/	1 a)] -bc} / n	10
		•	Calibration of [TSP Samplar			
~ 111 .		Or	fice	isi sampiel		HVS	
Calibration Point	ΔH (orifice), in. of water		0) x $(298/Ta)$] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	760) x (298/Ta)] ^{1/2} Y-axis
1	13.2		3.64	61.96	9.4		3.08
2	10.4		3.24	55.04	6.8		2.62
3	7.8		2.80	47.72	5.2		2.29
4	5.4		2.33	39.77	3.4		1.85
5	3.0		1.74	29.75	2.0		1.42
	0.0510 coefficient* =	_	9973	Intercept, bw =	-0.138	37	
			Set Point Ca	alculation			
		Curve, take Qstd he "Y" value acco	= 43 CFM				
Therefore, So	et Point; W = (n		$p = [\Delta W x]^2 x (760 / Pa) x (760 / Pa) (760 / Pa) x (7$		98/Ta)] ^{1/2} 4.19		
Remarks:				h			
Conducted by:	Wong S	hing Kwai	Signature:	(/	八-	Date:	9-Apr-22

nducted by:	Wong Shing Kwai	Signature:		Date:	9-Apr-22	
Checked by:	Henry Leung	Signature:	fleng drag	Date:	9-Apr-22	

.

File No. MA16034/05/0035

Project No.	AM1 - Tin Ha	u Temple				
Date:	9-A	Apr-22	Next Due Date:	9-Jun-22	Operator:	SK
Equipment No.:	A-	01-05	Model No.:	GS2310	Serial No.	10599
Temperatu	ire, Ta (K)	296.1	Ambient Condit Pressure, Pa (mml		760	
		-	-	-		

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420			
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler							
Calibration		Orfice			HVS		
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.2	3.64	61.96	9.6	3.11		
2	10.2	3.20	54.51	7.2	2.69		
3	7.7	2.78	47.42	5.4	2.33		
4	5.4	2.33	39.77	3.3	1.82		
5	3.0	1.74	29.75	2.0	1.42		
By Linear Regression of Y on X Slope , mw =							
	coefficient* =	0.9973	-				
*If Correlation C	Coefficient < 0.99	0, check and recalibrate.					
		S-4 D 4 C	- 11 - 4 ²				
From the TSD Fi	ald Calibration C	Set Point C urve, take Qstd = 43 CFM	alculation				
		e "Y" value according to					
From the Regres	sion Equation, the	e i value according to					
		$\mathbf{m}\mathbf{w} \mathbf{x} \mathbf{Q}\mathbf{s}\mathbf{t}\mathbf{d} + \mathbf{b}\mathbf{w} = [\Delta \mathbf{W}]$	x (Pa/760) x (29	98/Ta)] ^{1/2}			
Therefore, Se	et Point; W = (mv	$(x + bw)^2 x (760 / Pa) x ($	Ta / 298) =	4.29			
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature	K	<u>у</u> .	Date: 9-Apr-22		
Checked by:	Henry I	Leung Signature	-lem	N- 7 ^{Xn} 7_	Date: 9-Apr-22		

File No. MA16034/54/0034

Project No.	AM4(A) - Cha							
Date:	9-]	Feb-22	Next Due Date:	9-Apr-22	Operator:	SK		
Equipment No.:	A-	-01-54	Model No.:	TE-5170	Serial No.	1536		
			Ambient Conditi	ion				
Temperature, Ta (K)289.1Pressure, Pa (mmHg)764.2								
	Orifice Transfer Standard Information							

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05922	Intercept, bc	-0.02420		
Last Calibration Date:	31-Jan-22	Jan-22 mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler							
Calibration Orfice				HVS			
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\frac{[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}}{Y-axis}$		
1	13.2	3.70	62.87	9.6	3.15		
2	10.8	3.35	56.91	7.6	2.81		
3	7.8	2.84	48.42	5.4	2.37		
4	5.9	2.47	42.17	3.6	1.93		
5	3.0	1.76	30.19	2.0	1.44		
By Linear Regression of Y on X Slope , mw =0.0532Intercept, bw =0.2208 Correlation coefficient* =0.9967 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to	alculation				
Therefore, Se Remarks:	$mw \ x \ Qstd + bw = [\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =						
·	Wong Shi Henry I		: :lem	N. Janj-	Date: 9-Feb-22 Date: 9-Feb-22		

File No. MA16034/03/0034

Project No.	AM3 - Yau Lai	i Estate, Bik Lai	House			
Date:	9-F	eb-22	Next Due Date:	9-Apr-22	Operator:	SK
Equipment No.:	A-(01-03	Model No.:	GS2310	Serial No.	10379
			Ambient Conditi	on		
Temperatu	ıre, Ta (K)	289.1	Pressure, Pa (mmH	Ig)	764.2	
				-		

Orifice Transfer Standard Information							
Serial No.	Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420						
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date:	31-Jan-23	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler							
Calibration Orfice				HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.2	3.70	62.87	9.2	3.09		
2	10.4	3.28	55.85	7.0	2.69		
3	8.3	2.93	49.94	5.4	2.37		
4	5.4	2.37	40.36	3.4	1.88		
5	2.9	1.73	29.68	2.0	1.43		
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw = 0.0501 Intercept, bw = -0.0985 Correlation coefficient* = 0.9980 *If Correlation Coefficient < 0.990, check and recalibrate.						
From the TSP Fi	Set Point Calculation From the TSP Field Calibration Curve, take Qstd = 43 CFM						
		e "Y" value according to $\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ w x Qstd + bw) ² x (760 / Pa) x (7					
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	k	N	Date: 9-Feb-22		
Checked by:	Henry	Leung Signature:	- \-lem	j Xoz-	Date: 9-Feb-22		

File No. MA16034/08/0034

Project No.	AM2 - Sai Tso	Wan Recreation	Ground				
Date:	9-Feb-22		Next Due Date:	Next Due Date: 9-Apr-2		Operator:	SK
Equipment No.:	A-0	01-08	Model No.:	GS2310		Serial No.	1287
			Ambient C	andition			
Ambient Condition Temperature, Ta (K) 289.1 Pressure, Pa (mmHg)						764.2	
Temperatur	ie, 1a (K)	209.1	riessuie, ra	(mmng)		/04.2	
		Ori	fice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05922	Intercept	t, bc	-0.02420
Last Calibra	tion Date:	31-Jan-22			$c = [\Delta H x (Pa/760)]$		
Next Calibra	ation Date:	31-Jan-23	($Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/7	$[\Gamma a)]^{1/2} - bc\} / 1$	mc
		0.	Calibration of T	ISP Sampler		IIVS	
Calibration	ΔH (orifice),		fice	Qstd (CFM)	ΔW (HVS), in.	HVS	760) x (298/Ta)] ^{1/2}
Point	in. of water	[ΔH x (Pa/76	0) x $(298/Ta)$] ^{1/2}	X - axis	of water		Y-axis
1	13.2		3.70		9.2		3.09
2	10.4		3.28	55.85	6.8		2.65
3	8.0		2.88	49.03	5.1		2.30
4	5.4		2.37	40.36	3.4		1.88
5	3.0		1.76	30.19	2.0		1.44
Dr. Lincon Dogu	and of V or	v					
By Linear Regr Slope , mw =		Λ	1	ntorcont by	-0.115	5	
-	coefficient* =		9976	intercept, bw	-0.115	5	
		90, check and red					
			Set Point Ca	lculation			
From the TSP Fi	eld Calibration	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, t	he "Y" value acc	ording to				
			$bstd + bw = [\Delta W x]$	$(D_{-}/7(0) - (2))$	1/2		
		mw x Q	$sta + bw = [\Delta w x]$	$(Pa/760) \ge (25)$	98/1a)j		
Therefore, Se	et Point; W = (r	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.01		
Remarks:							
				h			
Conducted by:	Wong S	hing Kwai	Signature:	/	<u></u>	Date:	9-Feb-22

Signature:	lem	, cho	1	Date:	9-Feb-22
-	` J	1			

Checked by: Henry Leung

File No. MA16034/05/0034

Project No.	AM1 - Tin Hau	1 Temple				
Date:	9-F	eb-22	Next Due Date:	9-Apr-22	Operator:	SK
Equipment No.:	A-(01-05	Model No.:	GS2310	Serial No.	10599
			Ambient Condit	ion		
Temperatu	ure, Ta (K)	289.1	Pressure, Pa (mml	Hg)	764.2	
				-		

Orifice Transfer Standard Information							
Serial No. 3864 Slope, mc 0.05922 Intercept, bc -0.02420							
Last Calibration Date:	31-Jan-22	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$					
Next Calibration Date: 31-Jan-23 $Qstd = \{[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2} - bc\} / mc$							

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	$[\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.2	3.70	62.87	9.4	3.12			
2	10.2	3.25	55.31	7.0	2.69			
3	7.6	2.81	47.80	5.2	2.32			
4	5.4	2.37	40.36	3.3	1.85			
5	3.0	1.76	30.19	2.0	1.44			
Slope , mw = Correlation	By Linear Regression of Y on X Slope , mw =0.0522 Intercept, bw =0.1827 Correlation coefficient* =0.9976 *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to	Calculation					
Therefore, Se Remarks:	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$ v x Qstd + bw) ² x (760 / Pa) x (
·	Wong Shi Henry I	<u> </u>	: :	N	Date: 9-Feb-22 Date: 9-Feb-22			