

						File No.	MA20003/18/0010
	CKL 1 - Flat 12	_				-	av.
Date:			Next Due Date:			_	
Equipment No.:	A-0	1-18	Model No.:	TE	5170	Serial No.	0723
			Ambient (Condition			
Temperatu	re, Ta (K)	302.7	Pressure, Pa	(mmHg)		757.8	
		Oı	rifice Transfer Sta	andard Inform	ation		
Serial	l No.	3864	Slope, mc	0.05846	Intercep	t, bc	-0.00313
Last Calibra	ation Date:	11-Jan-21		mc x Qstd + b	$c = [\Delta H \times (Pa/76)]$)] ^{1/2}
Next Calibr	ation Date:	11-Jan-22			x (Pa/760) x (298		
			G 19 44 4	PERCENCE I			
	1		Calibration of	TSP Sampler		TIX (C	
Calibration Point	ΔH (orifice), in. of water		fice 0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	HVS [ΔW x (Pa/7	60) x (298/Ta)] ^{1/2} Y-
1		1	2.54				axis
2	12.8		3.54 3.16	60.69 54.18	9.8 8.0		3.10
3	8.4		2.87	49.17	5.9		2.80
4	6.2		2.47	42.25	4.0		1.98
5	3.4		1.83	31.30	1.9		1.37
By Linear Regr Slope , mw = Correlation		_	9 981	Intercept, bw :	-0.541	14	
	Coefficient < 0.99			-			
			Set Point C	Calculation			
	ield Calibration (ssion Equation, th	ne "Y" value acco	_	x (Pa/760) x (2	.98/Ta)] ^{1/2}		
Therefore, So	et Point; W = (m	nw x Qstd + bw)	² x (760 / Pa) x (′	Γa / 298) =	4.32		
Remarks:							
Conducted by:	Wong Sh	ing Kwai	Signature:	_ \text{\(\frac{1}{2}\)	<u> </u>	Date:	6-Sep-21
Checked by:	Henrv	Leung	Signature:	\-Pa	a Xon	Date:	6-Sep-21

File No. MA20003/55/0010

Project No.	CKL 2 - Flat 103	3 Cha Kwo Ling	Village				
Date:	6-Se	p-21	Next Due Date: 6-Nov		Nov-21	Operator:	SK
Equipment No.:	A-0	1-55	Model No.:	TE	E 5170	Serial No.	1956
			Ambient C	andition			
Temperatur	re Ta (K)	302.7	Pressure, Pa			757.8	
Temperatu	ic, ia (K)	302.7	Tressure, ra	(mmrig)		737.0	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05846	Intercept	, bc	-0.00313
Last Calibra	ntion Date:	11-Jan-21	1	mc x Qstd + bo	$c = [\Delta H \times (Pa/760)]$	$(298/Ta)]^{1/2}$	
Next Calibra	ation Date:	11-Jan-22		$Qstd = \{ [\Delta H \ x] $	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / mc	
			Calibration of	TSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		0) x (298/Ta)] ^{1/2} •axis
1	12.8		3.54	60.69	9.8	3	.10
2	10.8		3.26	55.75	7.6	2	.73
3	8.4		2.87	49.17	6.0	2	.43
4	5.6		2.34	40.16	3.6	1	.88
5	3.0		1.72	29.41	1.9	1	.37
-	ession of Y on X	<u> </u>					
Slope, mw =		_		Intercept, bw	-0.283	1	
	coefficient* =		.9979				
*If Correlation C	Coefficient < 0.99	0, check and red	calibrate.				
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	Curve, take Qstd	= 43 CFM				
From the Regres	sion Equation, th	e "Y" value acco	ording to				
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.40		
Remarks:							
					707		
Conducted by:	Wong Sh	ing Kwai	Signature:	<i>\</i> ?	<u> </u>	Date:	6-Sep-21
Checked by:	Henry	Leung	Signature:	\-lan	J Chang	Date:	6-Sep-21
				1	.] [

File No. MA20003/41/0008

Project No.	KTD 2D - Next	to the SOR Offic	ce of Trunk Road T	'2 in Kai Tak A	area	_	
Date:	25-Se	p-21	Next Due Date:	25-]	25-Nov-21		SK
Equipment No.:	A-01	1-41	Model No.:	TE	E 5170	Serial No.	5280
			•			_	
			Ambient C	ondition			
Temperatur	re, Ta (K)	302.6	Pressure, Pa	(mmHg)		759.5	
			ifice Transfer Star				
Serial		3864	Slope, mc	0.05846	Intercept		-0.00313
Last Calibra		11-Jan-21	1		$c = [\Delta H \times (Pa/760)]$ $(Pa/760) \times (298/7)$		
Next Calibra	ation Date:	11-Jan-22		$Qsta = \{ \Delta H x$	(Pa//00) X (298/)	[a)] -bc}/[inc
		•	Calibration of 7	FSP Sampler			
e 111 .		Or	fice	isi samplei		HVS	
Calibration Point	ΔH (orifice), in. of water		50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/	760) x (298/Ta)] ^{1/2} Y-axis
1	13.4		3.63	62.17	8.9		2.96
2	11.6		3.38	57.85	7.1	2.64	
3	8.3		2.86	48.94	5.6		2.35
4	6.0		2.43	41.62	4.0		1.98
5	3.0		1.72	29.45	2.4		1.54
Slope, mw = Correlation	coefficient < 0.99	0	.9954	Intercept, bw =	0.261	7	
			Set Point Ca	alculation			
From the TSP Fi	eld Calibration C	urve, take Qstd	= 43 CFM				
From the Regress	sion Equation, the	e "Y" value acco	ording to				
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	$98/Ta) ^{1/2}$		
Tl	t Deinte W. Com	O-+1 + 1 \	² x (760 / Pa) x (]	E- /208)			
Therefore, Se	et Point; w – (m	w x Qsia + bw)	x (/60 / Pa) x (1	1a / 298) –	4.41		
Remarks:							
Conducted by:	Wong Sh	ing Kwai	Signature:	K	<u></u>	Date:	25-Sep-21
Checked by:	Henry	Leung	Signature:	\-lea	g Xong	Date:	25-Sep-21

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/04/0008

Project No.	KER 1 - Future	Residential Dev	elopment at Kerry	Godown			
Date:	2-O	ct-21	Next Due Date:	2-Dec-21		Operator:	SK
Equipment No.:	A-0	1-04	•		TE 5170		10595
			Ambient C	ondition			
Temperatu	re, Ta (K)	303	Pressure, Pa			758.1	
	· · ·						
		Ori	fice Transfer Sta	ndard Informa	ation		
Serial	l No.	3864	*			-0.00313	
Last Calibra	ation Date:	11-Jan-21	r	nc x Qstd + bo	$c = [\Delta H \times (Pa/760]]$)) x (298/Ta)] ¹	/2
Next Calibr	ation Date:	11-Jan-22		$Qstd = \{ [\Delta H x] \}$	(Pa/760) x (298/	Γa)] ^{1/2} -bc} / n	nc
	ı		Calibration of	TSP Sampler			
Calibration		Or	fice	1		HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	(0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		60) x (298/Ta)] ^{1/2} /-axis
1	13.4		3.63	62.07	9.1		2.99
2	10.6		3.22	55.22	7.0	2.62	
3	8.4	:	2.87	49.16	5.6		2.34
4	5.2	:	2.26	38.69	3.2		1.77
5	3.0		1.72	29.40	2.1		1.44
_	coefficient* =	_	9978	Intercept, bw =	-0.028	80	
*If Correlation C	Coefficient < 0.9	90, check and red	calibrate.				
			Set Point Ca	alculation			
From the TSP Fi	ield Calibration (Curve, take Qstd					
From the Regres	ssion Equation, tl	ne "Y" value acc	ording to				
	_		-		1/2		
		mw x Q	$\mathbf{pstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	w x Qstd + bw)	² x (760 / Pa) x (⁷	Ta / 298) =	4.26		
Remarks:							
				la	ما		
Conducted by:	Wong Sh	ing Kwai	Signature:		//	Date:	2-Oct-21
•		-				_	
Checked by:	Henry	Leung	Signature:	1-Pa	- Mon	Date:	2-Oct-21

High-Volume TSP Sampler

5-POINT CALIBRATION DATA SHEET

File No. MA20003/44/0009

Project No.	KTD1 - Centre	of Excellence in	Paediatrics (Childs	ren's Hospital)			
Date:	2-0	ct-21	Next Due Date:	2-Dec-21		Operator:	SK
Equipment No.:	.: <u>A-01-44</u> Model No.: <u>TE-5170</u>		E-5170	Serial No.	1316		
			Ambient C	ondition			
Temperatu	re, Ta (K)	303	Pressure, Pa (mmHg)			758.1	
			ifice Transfer Sta			T.	
Serial		3864	Slope, mc	0.05846	Intercept		-0.00313
Last Calibra	The state of the s	11-Jan-21	4		$c = [\Delta H \times (Pa/760)]$		
Next Calibr	ration Date:	11-Jan-22		$Qstd = \{ \Delta H x \}$	(Pa/760) x (298/	[a)] ^{1/2} -bc} / m	c
			Calibration of	TSP Samplar			
6.17		Oı	fice	191 Sampici		HVS	
Calibration Point	ΔH (orifice), in. of water		60) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/76	(60) x (298/Ta)] ^{1/2} (-axis
1	13.6		3.65	62.54	9.2	,	3.00
2	11.2		3.31	56.75	7.2	2	2.66
3	8.2		2.84	48.57	5.6	2	2.34
4	5.6		2.34	40.15	3.3		1.80
5	3.2		1.77	30.36	1.8		1.33
Slope , mw = Correlation	coefficient* =	_	.9978	Intercept, bw :	-0.251	5	
			Set Point Ca	alculation			
From the TSP Fi	ield Calibration (Curve, take Qstd	= 43 CFM				
From the Regres	ssion Equation, t	he "Y" value acc	ording to				
		mw x C	$\mathbf{0std} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	$98/Ta) ^{1/2}$		
Therefore, Se	et Point; W = (m	nw x Qstd + bw)	² x (760 / Pa) x (′	Ta / 298)=	4.01		
Remarks:							
				la	-1		
Conducted by:	Wong Sl	ning Kwai	Signature:		<u></u>	Date:	2-Oct-21
Checked by:	Henry	Leung	Signature:	\-lem	, don	Date:	2-Oct-21

High-Volume TSP Sampler

						File No.	MA20003/18/0011
Project No.	CKL 1 - Flat 121					-	
Date:	6-No	v-21	Next Due Date:	6-J	Jan-22	Operator:	SK
Equipment No.:	A-01	1-18	Model No.:	TE	E 5170	Serial No.	0723
			Ambient	Condition			
Temperatur	re, Ta (K)	299.4	Pressure, Pa	(mmHg)		757.5	
		Or	ifice Transfer Sta	andard Inform	nation		
Serial	No	3864	Slope, mc	0.05846	Intercep	t be	-0.00313
		11-Jan-21	Stope, file		$\mathbf{pc} = [\Delta \mathbf{H} \times (\mathbf{Pa}/76)]$		
					x (Pa/760) x (298		
Next Calibra	ation Date:	11-Jan-22		Qstu – {[ΔII]	X (F a/ /00) X (296)	/1a) _[-bc ₃	/ IIIC
			Calibration of	TSP Sampler	ı		
Calibration		Or	fice	<u> </u>		HVS	1/2
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	0) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	[ΔW x (Pa/7	(60) x (298/Ta)] ^{1/2} Y-axis
1	12.9	3	3.58	61.25	9.8	3.12	
2	10.3	3	3.20	54.73	8.0	2.82	
3	8.5	2	2.90	49.73	5.9		2.42
4	6.2	2	2.48	42.48	4.0		1.99
5	3.4	1	.84	31.47	1.9		1.37
Ry Linear Regr	ession of Y on X	7					
	0.0598			Intercept, bw :	-0.524	11	
Correlation		0.	9982	.			
	Coefficient < 0.99	-		-			
		,					
			Set Point (Calculation			
	eld Calibration C	_					
From the Regres	sion Equation, th	e "Y" value acco	ording to				
		mw x ($\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W}]$	x (Pa/760) x (2	298/Ta)] ^{1/2}		
			2.1.2 2.1. [2.1.]	() (-			
Therefore, Se	et Point; W = (m	$w \times Qstd + bw$) ²	x (760 / Pa) x (Ta / 298) =	4.23		
D 1							
Remarks:							
				W-1			
Conducted by:	Wong Sh	ing Kwai	Signature:	X)\	Date:	6-Nov-21
conducted by.	wong sii	ing Kwai	oignature.		2 X27	- Daic.	0-1101-21
Checked by:	Henry	Leung	Signature:	1-Pa	2 Xon	Date:	6-Nov-21

File No. MA20003/55/0011

Project No.	CKL 2 - Flat 10	3 Cha Kwo Ling	Village					
Date:	6-N	ov-21	Next Due Date:	:6-Jan-22		Operator:	SK	
Equipment No.:	A-0	01-55			E 5170		1956	
			Ambient C	ondition				
Temperatur	re, Ta (K)	299.4	Pressure, Pa			757.5		
•					•			
		Or	ifice Transfer Star	ndard Informa	ation			
Serial	Serial No. 3864		Slope, mc	0.05846	Intercept	•		
Last Calibra	ntion Date:	11-Jan-21	1		$c = [\Delta H \times (Pa/760)]$			
Next Calibra	ation Date:	11-Jan-22	($Qstd = \{ [\Delta H \ x]$	(Pa/760) x (298/7	[a)] ^{1/2} -bc} / mc		
	<u> </u>		Calibration of 7	FSP Sampler	Ι	THE IC		
Calibration Point	ΔH (orifice),		fice 50) x (298/Ta)] ^{1/2}	Qstd (CFM)	ΔW (HVS), in.		0) x (298/Ta)] ^{1/2}	
	in. of water			X - axis	of water		axis	
1	12.7	1	3.55	60.77	9.8		.12	
2	10.7	1	3.26	55.78	7.6		.75	
3	8.4	1	2.89	49.43	6.0		.44	
5	5.5 2.9		2.34 1.70	40.01 29.07	3.6 1.9		.37	
By Linear Regr Slope , mw = Correlation	0.0544 coefficient* =	0	.9978	Intercept, bw	-0.246	1		
*If Correlation C	Coefficient < 0.9	90, check and red	calibrate.					
			Set Point Ca	alculation				
		Curve, take Qstd						
From the Regres	sion Equation, tl	ne "Y" value acc	ording to					
		mw x ($Qstd + bw = [\Delta W x]$	(Pa/760) x (29	98/Ta)] ^{1/2}			
Therefore, Se	et Point; W = (m	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.42			
Remarks:								
Conducted by:	Wong Sl	ning Kwai	Signature:	\(\frac{1}{2}\)	<u></u>	Date:	6-Nov-21	
Checked by:	Henry	Leung	Signature:	\-la	Jan	Date:	6-Nov-21	

File No. MA20003/41/0009

Project No.	KTD 2D - Next	to the SOR Offic	ce of Trunk Road T	2 in Kai Tak A	area		
Date:	25-N	Jov-21	Next Due Date:	25-	Jan-22	Operator:	SK
Equipment No.:)1-41		TE	E 5170	_	5280
			Ambient C	ondition			
Temperatu	re Ta(K)	293.6	Pressure, Pa			763.5	
Temperatu	10, 14 (11)	273.0	i ressure, ru	(mmig)		703.3	
		Or	ifice Transfer Star	ndard Informa	ation		
Serial	No.	3864	Slope, mc	0.05846	Intercept	t, bc	-0.00313
Last Calibra	ation Date:	11-Jan-21	mc x Qstd + bc = $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$				
Next Calibra	ation Date:	11-Jan-22		$Qstd = \{ [\Delta H \ x] \}$	(Pa/760) x (298/7	Γa)] ^{1/2} -bc} / r	nc
		•					
			Calibration of T	ΓSP Sampler			
Calibration		Or	fice			HVS	
Point	ΔH (orifice), in. of water	[ΔH x (Pa/76	50) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water		760) x (298/Ta)] ^{1/2} Y-axis
1	13.2		3.67	62.81	9.2		3.06
2	11.4		3.41	58.37	7.4		2.75
3	8.2		2.89	49.52	5.8		2.43
4	6.0		2.47	42.36	4.2		2.07
5	3.0		1.75	29.97	2.3		1.53
By Linear Regr Slope , mw = Correlation *If Correlation C	0.0454 coefficient* =	_	.9974	intercept, bw =	0.1604	4	
			Set Point Ca	lculation			
		Curve, take Qstd he "Y" value acco					
rom me regres	sion Equation, u		_				
		mw x Q	$\mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \ \mathbf{x}]$	(Pa/760) x (29	98/Ta)] ^{1/2}		
Therefore, Se	et Point; W = (m	nw x Qstd + bw)	² x (760 / Pa) x (7	Γa / 298) =	4.38		
Remarks:							
Conducted by:	Wong Sl	ning Kwai	Signature:	K	<u></u>	Date:	25-Nov-21
Checked by:	Henry	Leung	Signature:	Plan	y day	Date: _	25-Nov-21

RECALIBRATION
DUE DATE:

January 11, 2022

Certificate of Calibration

Calibration Certification Information

Cal. Date: January 11, 2021

Rootsmeter S/N: 438320

°K

Operator: Jim Tisch

Ta: 297
Pa: 750.1

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 3864

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4470	3.2	2.00
2	3	4	1	1.0210	6.4	4.00
3	5	6	1	0.9140	8.0	5.00
4	, 7	8	1	0.8670	8.8	5.50
5	9	10	1	0.7140	12.9	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	$\sqrt{\Delta H (Ta/Pa)}$		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
0.9860	0.6814	1.4073	0.9957	0.6881	0.8899		
0.9818	0.9616	1.9902	0.9915	0.9711	1.2585		
0.9797	1.0719	2.2251	0.9893	1.0824	1.4071		
0.9786	1.1288	2.3337	0.9883	1.1399	1.4757		
0.9732	1.3630	2.8146	0.9828	1.3765	1.7798		
	m=	2.06566		m=	1.29348		
QSTD	b=	0.00315	QA	b=	0.00199		
	r=	0.99996		r=	0.99996		

Calculations							
Vstd=	ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)	Va=	ΔVol((Pa-ΔP)/Pa)				
Qstd=	Qstd= Vstd/ΔTime Qa= Va/ΔTime						
	For subsequent flow rate calculations:						
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$				

Standard Conditions						
Tstd: 298.15 °K						
Pstd: 760 mm Hg						
	Key					
ΔH: calibrate	ΔH: calibrator manometer reading (in H2O)					
ΔP: rootsme	ter manometer reading (mm Hg)					
Ta: actual ab	osolute temperature (°K)					
Pa: actual barometric pressure (mm Hg)						
b: intercept						
m: slope						

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

FAX: (513)467-9009

www.tisch-env.com

Certificate of Calibration - Wind Monitoring Station

Description: Yau Lai Estate, Bik Lai House

Manufacturer: <u>Davis Instruments</u>

Model No.: <u>Davis7440</u>

Serial No.: MC01010A44

Equipment No.: <u>SA-03-04</u>

Date of Calibration <u>20-Aug-2021</u>

Next Due Date <u>20-Feb-2022</u>

1. Performance check of Wind Speed

Wind Speed, m/s		Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.5	0.0
2.8	2.7	0.1
4.0	4.1	-0.1

2. Performance check of Wind Direction

Wind Direction (°)		Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	D = W1 - W2
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

- 1. Performance Wind Speed Test The wind meter was on-site calibrated against the anemometer
- 2. Performance Wind Direction Test The wind meter was on-site calibrated against the marine compass at four direction

Calibrated by: Approved by: Approved by: Henry Leung