CIN@TECH 🤳

Certificate of Calibration - Wind Monitoring Station

Yau Lai Estate, Bik Lai House
Davis Instruments
Davis7440
MC01010A44
<u>SA-03-04</u>
<u>17-Feb-2025</u>
<u>17-Aug-2025</u>

1. Performance check of Wind Speed

Wind Sp	beed, m/s	Difference D (m/s)
Wind Speed Reading (V1)	Anemometer Value (V2)	D = V1 - V2
0.0	0.0	0.0
1.5	1.4	0.1
2.5	2.4	0.1
4.0	3.8	0.2

2. Performance check of Wind Direction

Wind Di	rection (°)	Difference D (°)
Wind Direction Reading (W1)	Marine Compass Value (W2)	$\mathbf{D} = \mathbf{W1} - \mathbf{W2}$
0	0	0.0
90	90	0.0
180	180	0.0
270	270	0.0

Test Specification:

1. Performance Wind Speed Test - The wind meter was on-site calibrated against the anemometer

2. Performance Wind Direction Test - The wind meter was on-site calibrated against the marine compass at four direction

RECALIBRATION

DUE DATE:

January 7, 2026

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	January 7,	2025	Roots	meter S/N:	438320	Та:	293	°K
Operator:	Jim Tisch					Pa:	759.0	mm Hg
Calibration	Model #:	TE-5025A	Calil	brator S/N:	3864			-
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔН	
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1	1.4590	3.2	2.00	
	2	3	4	1	1.0360	6.4	4.00	
	3	5	6	1	0.9160	8.0	5.00	
	4	7	8	1	0.8800	8.8	5.50	
	5	9	10	1	0.7270	12.7	8.00	
			[Data Tabula	tion			
	Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right)}$)(<u>Tstd</u>) Ta)		Qa	$\sqrt{\Delta H(Ta/Pa)}$	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	1.0114	0.6932	1.425	52	0.9958	0.6825	0.8787	
	1.0071	0.9721	2.015	2.0156		0.9571	1.2427	
	1.0050	1.0971	2.253	35	0.9895	1.0802	1.3893	
	1.0039	1.1408	2.363	35	0.9884	1.1232	1.4572	
	0.9987	1.3737	2.850		0.9833	1.3525	1.7574	
		m=	2.089			m=	1.30853	
	QSTD	b=	-0.023		QA	b=	-0.01464	
		r= 0.99985				r=	0.99985	
				Calculatio				
			/Pstd)(Tstd/Ta	a)	Va= ΔVol((Pa-ΔP)/Pa)			
	Qstd=	Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow ra	te calculatio	ns:		
	Qstd=	1/m ((√∆H(Pa <u>(Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆H	l(Та/Ра))-b)	
		Conditions						
Tstd:	298.15			[RECA	LIBRATION	
Pstd:		mm Hg						4000
ALL calibrat		(ey er reading (i	2 H2O)				nnual recalibratio	
		er reading (i eter reading					Regulations Part 5	-
		perature (°K)	(1111118)				Reference Meth	
		essure (mm	Hg)				ended Particulate	
o: intercept					the	e Atmosphe	re, 9.2.17, page 3	30
•								

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

.

File No. MA16034/05/0052

Project No.	AM1 - Tin Ha	1 Temple					
Date:	14-]	Feb-25	Next Due Date:	14-Apr-25	Operator:	SK	
Equipment No.: A-01-05		01-05	Model No.:	GS2310	Serial No.	10599	
			Ambient Condit	ion			
Temperatu	ıre, Ta (K)	291.2	Pressure, Pa (mm	Hg)	763.4		

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377			
Last Calibration Date:	7-Jan-25	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	7-Jan-26	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler								
Calibration			HVS					
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.1	3.67	62.45	8.6	2.97			
2	10.2	3.24	55.15	6.4	2.56			
3	7.1	2.70	46.08	4.2	2.08			
4	5.1	2.29	39.12	2.7	1.67			
5	2.9	1.73	29.60	1.4	1.20			
By Linear Regression of Y on X Slope , mw =								
Correlation	coefficient* =	0.9996	-					
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point C	alculation					
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	e "Y" value according to						
mw x Qstd + bw = $[\Delta W x (Pa/760) x (298/Ta)]^{1/2}$								
Therefore, Se	ct Point; $w = (11)$	$x = \frac{1}{2} x = $	1a / 296 =	3.54				
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature:	K	N- Jan	Date: 14-Feb-25			
Checked by:	Henry I	Leung Signature:	-lem	J Xm J	Date: 14-Feb-25			

.

File No. MA16034/05/0053

Project No.	AM1 - Tin Hau	1 Temple					
Date:	14-4	Apr-25	Next Due Date:	14-Jun-25	Operator:	SK	
Equipment No.: A-01-05		01-05	Model No.:	GS2310	Serial No.	10599	
			Ambient Condit	ion			
Temperatu	ire, Ta (K)	295.6	Pressure, Pa (mm	Hg)	759.7		

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377			
Last Calibration Date:	7-Jan-25	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	7-Jan-26	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

Calibration of TSP Sampler								
Calibration		Orfice	HVS					
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.2	3.65	62.07	8.5	2.93			
2	10.1	3.19	54.35	6.3	2.52			
3	7.2	2.69	45.95	4.1	2.03			
4	5.0	2.24	38.36	2.7	1.65			
5	2.8	1.68	28.81	1.0	1.00			
By Linear Regression of Y on X Slope , mw =0.0573 Intercept, bw :0.6019 Correlation coefficient* =0.9987								
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point C	alculation					
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	"Y" value according to						
$mw x Qstd + bw = [\Delta W x (Pa/760) x (298/Ta)]^{1/2}$ Therefore, Set Point; W = (mw x Qstd + bw) ² x (760 / Pa) x (Ta / 298) =3.43								
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature:	K	N. Janj	Date: 14-Apr-25			
Checked by:	Henry I	Leung Signature:	-lem	J Xm J	Date: 14-Apr-25			

File No. MA16034/08/0052

Project No.	AM2 - Sai Tso	Wan Recreation	n Ground					
Date:	14-]	Feb-25	Next Due Date:	14-Apr-25	Operator:	SK		
Equipment No.: A-01-08		01-08	Model No.:	GS2310	Serial No.	1287		
	Ambient Condition							
Temperatu	ure, Ta (K)	291.2	Pressure, Pa (mml	Hg)	763.4			

Orifice Transfer Standard Information								
Serial No.	3864	Slope, mc 0.05914 Intercept, bc -0.02377						
Last Calibration Date:	7-Jan-25	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	7-Jan-26	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc						

		Calibration of	TSP Sampler				
Calibration		Orfice		HVS			
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.4	3.71	63.16	8.4	2.94		
2	10.2	3.24	55.15	6.2	2.52		
3	7.6	2.80	47.66	4.1	2.05		
4	5.3	2.33	39.87	2.6	1.63		
5	3.2	1.82	31.12	1.4	1.20		
Slope , mw = Correlation	coefficient* =	0.9993), check and recalibrate.	Intercept, bw : _	-0.535	4		
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to	alculation				
		$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\mathbf{\Delta W} \mathbf{x}]$ w x Qstd + bw) ² x (760 / Pa) x (
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature	: <u>k</u>	N- - Nor	Date: 14-Feb-25		
Checked by:	Henry I	Leung Signature	: \-lem	y drag	Date: 14-Feb-25		

File No. MA16034/08/0053

Project No.	AM2 - Sai Tso	Wan Recreation	n Ground			
Date:	14-4	Apr-25	Next Due Date:	14-Jun-25	Operator:	SK
Equipment No.:	A-(01-08	Model No.:	GS2310	Serial No.	1287
			Ambient Condit	ion		
Temperatu	re, Ta (K)	295.6	Pressure, Pa (mml	Hg)	759.7	

	Orifice Transfer Standard Information						
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377		
Last Calibration Date:	7-Jan-25	1	nc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	7-Jan-26	Qstd = { $[\Delta H \times (Pa/760) \times (298/Ta)]^{1/2}$ -bc} / mc					

Calibration of TSP Sampler								
Calibration		Orfice			HVS			
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.2	3.65	62.07	8.5	2.93			
2	10.1	3.19	54.35	6.1	2.48			
3	7.5	2.75	46.89	4.0	2.01			
4	5.2	2.29	39.11	2.5	1.59			
5	3.1	1.77	30.29	1.5	1.23			
Slope , mw = Correlation	coefficient* =	0.9967), check and recalibrate.	Intercept, bw = _	-0.479	0			
From the Regres	sion Equation, the	Set Point C urve, take Qstd = 43 CFM e "Y" value according to $mw x Qstd + bw = [\Delta W$ $v x Qstd + bw)^2 x (760 / Pa) x ($	x (Pa/760) x (29					
Remarks:								
	Wong Shi Henry I	ng Kwai Signature Leung Signature	: :len	<u>у.</u> - 2007	Date: 14-Apr-25 Date: 14-Apr-25			

.

File No. MA16034/03/0052

Project No.	AM3 - Yau La	i Estate, Bik Lai	House				
Date:	14-]	Feb-25	Next Due Date:	14-Apr-25	Operator:	SK	
Equipment No.:	A-	01-03	Model No.:	GS2310	Serial No.	10379	
Temperatu	ire, Ta (K)	291.2	Ambient Condition		763.4		

Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377		
Last Calibration Date:	7-Jan-25	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}		
Next Calibration Date:	7-Jan-26		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	$\left(Pa/760\right) x \left(298/Ta\right)]^{1/2} \ \text{-bc} \} / $	mc		

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis			
1	13.0	3.66	62.21	8.1	2.89			
2	10.1	3.22	54.88	6.1	2.50			
3	7.5	2.78	47.35	4.3	2.10			
4	5.1	2.29	39.12	2.6	1.63			
5	3.0	1.76	30.10	1.5	1.24			
	By Linear Regression of Y on X Slope , mw = 0.0519 Intercept, bw : -0.3513							
		0.9991), check and recalibrate.	-					
*II Correlation C	0.990), check and recambrate.						
		Set Point C	alculation					
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	"Y" value according to						
	-	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ w x Qstd + bw) ² x (760 / Pa) x (7						
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature:	k	<u>Д.</u>	Date: 14-Feb-25			
Checked by:	Henry I	Leung Signature:	-lem	7 ^x ~7	Date: 14-Feb-25			

.

File No. MA16034/03/0053

Project No.	AM3 - Yau La	i Estate, Bik Lai	House			
Date:	14-2	Apr-25	Next Due Date:	14-Jun-25	Operator:	SK
Equipment No.:	A-	01-03	Model No.:	GS2310	Serial No.	10379
			Ambient Condit	ion		
Temperatu	re, Ta (K)	295.6	Pressure, Pa (mml	Hg)	759.7	

	Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377			
Last Calibration Date:	7-Jan-25	mc x Qstd + bc = $[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$						
Next Calibration Date:	Next Calibration Date: 7-Jan-26 $Qstd = \{ [\Delta H \times (Pa/760) \times (298/Ta)]^{1/2} - bc \} / mc$							

Calibration of TSP Sampler								
Calibration		Orfice		HVS				
Point	ΔH (orifice), in. of water	[ΔH x (Pa/760) x (298/Ta)] ^{1/2}	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$\begin{bmatrix} \Delta W \ x \ (Pa/760) \ x \ (298/Ta) \end{bmatrix}^{1}$ Y-axis			
1	13.1	3.63	61.84	8.3	2.89			
2	10.0	3.17	54.08	6.3	2.52			
3	7.4	2.73	46.58	4.1	2.03			
4	5.0	2.24	38.36	2.4	1.56			
5	3.2	1.80	30.77	1.4	1.19			
Slope , mw =	By Linear Regression of Y on X Slope , mw = <u>0.0562</u> Intercept, bw : <u>-0.5643</u> Correlation coefficient* = 0.9988							
*If Correlation C	Coefficient < 0.990), check and recalibrate.						
		Set Point C	alculation					
From the TSP Fi	eld Calibration Cu	urve, take Qstd = 43 CFM						
From the Regres	sion Equation, the	"Y" value according to						
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ w x Qstd + bw) ² x (760 / Pa) x (
Remarks:								
Conducted by:	Wong Shi	ng Kwai Signature:	K	火.	Date: 14-Apr-25			
Checked by:	Henry I	Leung Signature:	len	N- 7 X-7	Date: 14-Apr-25			

.

File No. MA20003/55/031

Project No.	CKL 2 - Flat 10	03 Cha Kwo Lin	g Village			
Date:	6-N	Iar-25	Next Due Date:	6-May-25	Operator:	SK
Equipment No.:	A-(01-55	Model No.:	TE 5170	Serial No.	1956
			Ambient Condit	ion		
Temperatu	ıre, Ta (K)	287.5	Pressure, Pa (mml	Hg)	764.8	

	Orifice Transfer Standard Information							
Serial No.	3864	Slope, mc	0.05914	Intercept, bc	-0.02377			
Last Calibration Date:	7-Jan-25	1	mc x Qstd + bo	$c = [\Delta H \ x \ (Pa/760) \ x \ (298/Ta)]$] ^{1/2}			
Next Calibration Date:	7-Jan-26		$\mathbf{Qstd} = \{ [\Delta \mathbf{H} \mathbf{x}] \}$	$\left(\text{Pa/760} \right) x \left(298/\text{Ta} \right) \right]^{1/2} \text{-bc} \} / $	mc			

Calibration of TSP Sampler							
Calibration		Orfice		HVS			
Point	ΔH (orifice), in. of water	$[\Delta H x (Pa/760) x (298/Ta)]^{1/2}$	Qstd (CFM) X - axis	ΔW (HVS), in. of water	$[\Delta W \ x \ (Pa/760) \ x \ (298/Ta)]^{1/2}$ Y-axis		
1	13.5	3.75	63.85	9.1	3.08		
2	11.0	3.39	57.68	7.2	2.74		
3	9.1	3.08	52.50	5.6	2.42		
4	5.1	2.31	39.40	2.6	1.65		
5	3.8	1.99	34.07	1.9	1.41		
By Linear Regression of Y on X Slope , mw =0.0571 Intercept, bw :0.5684 Correlation coefficient* = *If Correlation Coefficient < 0.990, check and recalibrate.							
		Set Point C urve, take Qstd = 43 CFM e "Y" value according to	alculation				
Therefore, Se	et Point; W = (mv	$\mathbf{mw} \mathbf{x} \mathbf{Qstd} + \mathbf{bw} = [\Delta \mathbf{W} \mathbf{x}]$ v x Qstd + bw) ² x (760 / Pa) x (7					
Remarks:							
Conducted by:	Wong Shi	ng Kwai Signature:	<u>X</u>	M.	Date: 6-Mar-25		
Checked by:	Henry I	Leung Signature:	-lem	g drag	Date: 6-Mar-25		

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description: Laser Dust Monitor			Date of Calibration 30-Jan-25					
Manufacturer:	Sibata Scientif	ic Technology	LTD.		Validity of Calibration Record 1-Apr-25			
Model No.:	LD-3B							
Serial No.:	2Y6194							
Equipment No.:	SA-01-02			Sensitivity	0.001 mg/m3	_		
High Volume Sa	ampler No.:	A-01-03		Before Sensi	itivity Adjustment	578		
Tisch Calibratio	n Orifice No.:	3864		After Sensiti	ivity Adjustment	578		
			Calibrat	tion of 1 hr T	SP			
Calibration		Laser Du	st Monitor			HVS		
Point	Total Count		Count / Minute X-axis		Mass concentration (μg/m ³) Y-axis			
1	4000		74.0			143.0		
2	3600		64.0		ļ	121.0		
3	3000		54.0		ļ	101.0		
Aver	rage		64.0		121.7			
By Linear Regr Slope , mw =	ression of Y on 2.10			Inter	rcept, bw =	-12.733	3	
Correl	ation coefficien	.t* =	0.999)6	-			
Set Correlation I SCF = [K=Hig		pler / Dust Mo	eter, (μg/m3)]		1.9			

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Limited)

Calibrated by:

Approved by: leng the Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	: Laser Dust Monitor		Date of Calibration 1-Apr-25				
Manufacturer:	Sibata Scientif	ïc Technology LTD.	_	Validity of Calibra	Validity of Calibration Record		
Model No.:	LD-3B						
Serial No.:	2Y6194						
Equipment No.:	SA-01-02		Sensitivity	0.001 mg/m3			
High Volume Sa	ampler No.:	A-01-03	Before Sensi	tivity Adjustment	578		
Tisch Calibratio	n Orifice No.:	3864	After Sensitivity Adjustment 578				
		С	alibration of 1 hr T	SP			
Calibration		Laser Dust Monito	r	HVS			
Point	Total Count	Count / N X-ax		Mass concentration (μg/m ³) Y-axis			
1	4000	74.0	0		140.0)	
2	3600	64.0)		118.0		
3	3000	54.0	0		100.0		
Aver	rage	64.0	D	119.3			
By Linear Regr Slope , mw =			Inter	ccept, bw =	-8.6667		
Correl	ation coefficien		0.9983				
Set Correlation 1 SCF = [K=Hig		pler / Dust Meter, (μ g	/m3)]	1.9			

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Limited)

Calibrated by:

Approved by: leng the Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	8Y2374				
Equipment No.:	SA-01-04	Sensitivity	0.001 mg/m3		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensitiv	vity Adjustment	652	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ty Adjustment	652	
	Ca	alibration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (µg/ X-axis	/m3)	Mass concentration (µg/m ³) Y-axis		
1	75.0			136.0	
2	63.0			118.0	
3	53.0			101.0	
Average	63.7			118.3	
By Linear Regi Slope , mw = Correlation co			cept, bw =	17.2363	
	Se	et Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		118.3	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			63.7	
Measureing time	e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	gh Volume Sampler / Dust Meter, (μ	.g/m3)]	1.9		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Chang Chang

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	8Y2374				
Equipment No.:	SA-01-04	Sensitivity	0.001 mg/m3		
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	652	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ity Adjustment	652	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/ X-axis	′m3)	Mass concentration (µg/m ³) Y-axis		
1	76.0			134.0	
2	64.0			121.0	
3	52.0			103.0	
Average	64.0			119.3	
By Linear Regi Slope , mw = Correlation co			cept, bw =	36.6667	
	Se	et Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		119.3	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			64.0	
Measureing time	e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	g/m3)]	1.9		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Chang Chang

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.		Validity of Calibr	ration Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	8Y2373				
Equipment No.:	SA-01-05	Sensitivity	0.001 mg/m3		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensiti	vity Adjustment	657	
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitiv	ity Adjustment	657	
	C:	alibration of 1 h	Ir TSP		
Calibration	Laser Dust Monito			HVS	
Point	Mass Concentration (µg/m3) X-axis		Mass concentration (µg/m ³) Y-axis		
1	76.0			132.0	
2	64.0			116.0	
3	55.0			102.0	
Average	65.0			116.7	
By Linear Regr Slope , mw = Correlation co	ression of Y on X <u>1.4234</u> oefficient* = 0.9990		cept, bw =	24.1441	
			-		
	S	et Correlation F	actor		
Particaulate Con	ncentration by High Volume Sampler	$(\mu g/m^3)$		116.7	
Particaulate Con	ncentration by Dust Meter ($\mu g/m^3$)			65.0	
Measureing time	e, (min)			60.0	
Set Correlation l	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	ıg/m3)]	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Chang the

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ration Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	8Y2373				
Equipment No.:	SA-01-05	Sensitivity	0.001 mg/m3	-	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	657	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ty Adjustment	657	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (µg/ X-axis	'm3)	Mass concentration (µg/m ³) Y-axis		
1	72.0			133.0	
2	62.0			115.0	
3	57.0			102.0	
Average	63.7			116.7	
By Linear Reg Slope , mw = Correlation co			cept, bw =	-12.4857	
	Se	et Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		116.7	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			63.7	
Measureing time	e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	g/m3)]	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: hen the

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	972777				
Equipment No.:	: <u>SA-01-06</u>	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	645	
Tisch Calibratic	on Orifice No.: 3864	After Sensitiv	ity Adjustment	645	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/ X-axis	/m3)	Mas	ss concentration (µ Y-axis	ug/m ³)
1	75.0			133.0	
2	63.0			117.0	
3	52.0			101.0	
Average	63.3			117.0	
By Linear Reg	ression of Y on X				
Slope, mw =	1.3904	Inter	cept, bw =	28.9395	
Correlation c	coefficient* = 0.9997	1	_		
	Se	et Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		117.0	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			63.3	
Measureing time	.e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	gh Volume Sampler / Dust Meter, (μ	.g/m3)]	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: en the

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ation Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	972777				
Equipment No.:	SA-01-06	Sensitivity	0.001 mg/m3		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensitiv	vity Adjustment	645	
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitivi	ty Adjustment	645	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/ X-axis	/m3)	Mass concentration (µg/m ³) Y-axis		
1	74.0			131.0	
2	62.0			115.0	
3	51.0			103.0	
Average	62.3			116.3	
	ression of Y on X 		cept, bw =	40.3401	
	Sa	A Completion F			
Partiagulata Cor		et Correlation F (ug/m^3)	actor	116.3	
	ncentration by High Volume Sampler (ncentration by Dust Meter ($\mu g/m^3$)	(µg/m)		62.3	
Measureing time				60.0	
Set Correlation 1				00.0	
	h Volume Sampler / Dust Meter, (μ	g/m3)]	1.9		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Chang Chang

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibi	ration Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	735 CPM	
Tisch Calibratio	on Orifice No.: 3864	After Sensitivi	ty Adjustment	735 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	•		HVS	
Point	Mass Concentration (µg/	Mas	ss concentration (µ	.g/m ³)	
	X-axis			Y-axis	
1	77.0			141.0	
2	67.0			120.0	
3	56.0			100.0	
Average	66.7			120.3	
By Linear Regression of Y on X Slope , mw = <u>1.9502</u> Intercept, bw = <u>-9.6767</u> Correlation coefficient* = <u>0.9991</u>					
	Se	t Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		120.3	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			66.7	
Measureing time	e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (µ	g/m3)	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: 1 an

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator	Date of Calibration 1-Ap			1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	972778				
Equipment No.:	SA-01-07	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	735 CPM	
Tisch Calibratio	on Orifice No.: 3864	After Sensitivi	ensitivity Adjustment 735 CPM		
	Ca	llibration of 1 hi	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/	Mass concentration ($\mu g/m^3$)			
	X-axis			Y-axis	
1	78.0		<u> </u>	140.0	
2	65.0			118.0	
3	55.0		<u></u>	105.0	
Average	66.0		1	121.0	
By Linear Regression of Y on X Slope , mw = <u>1.5301</u> Intercept, bw = <u>20.0150</u> Correlation coefficient* = <u>0.9974</u>					
	Se	et Correlation Fa	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$	<u> </u>	121.0	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)		<u> </u>	66.0	
Measureing time	e, (min)		1	60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	gh Volume Sampler / Dust Meter, (µ	g/m3)	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date of	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.	Validit	ty of Calibra	ation Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	972780				
Equipment No.:	SA-01-09	Sensitivity 0.001	1 mg/m3		
High Volume Sa	ampler No.: <u>A-01-03</u>	Before Sensitivity Adj	justment	739 CPM	
Tisch Calibratio	n Orifice No.: <u>3864</u>	After Sensitivity Adjus	stment	739 CPM	
	Ca	libration of 1 hr TSP			
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (µg/: X-axis	m3)	Mass concentration (µg/m ³) Y-axis		
1	73.0		139.0		
2	63.0			117.0	
3	55.0			101.0	
Average	63.7			119.0	
By Linear Regr Slope , mw = Correlation co	ression of Y on X 	Intercept, bw	v =	-15.639	<u>'3</u>
	Se	t Correlation Factor			
Particaulate Con	centration by High Volume Sampler ($(\mu g/m^3)$		119.0	
Particaulate Con	centration by Dust Meter ($\mu g/m^3$)		63.7		
Measureing time	e, (min)		60.0		
Set Correlation I	Factor, SCF				

SCF = [K=High Volume Sampler / Dust Meter, (µg/m3)]

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____ Chang Chang

Technical Officer (Wong Shing Kwai)

Project Manager (Henry Leung)

1.9

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	972780				
Equipment No.:	SA-01-09	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	739 CPM	
Tisch Calibratic	on Orifice No.: 3864	After Sensitivi	ty Adjustment	739 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor	r		HVS	
Point	Mass Concentration (µg/ X-axis	'm3)	Mas	ss concentration (μ Y-axis	g/m ³)
1	74.0		138.0		
2	62.0			115.0	
3	56.0			100.0	
Average	64.0		<u> </u>	117.7	
By Linear Regi Slope , mw = Correlation co			cept, bw =	-15.6667	
	Se	et Correlation Fa	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		117.7	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)			64.0	
Measureing time	e, (min)			60.0	
Set Correlation I	Factor , SCF zh Volume Sampler / Dust Meter, (us	g/m3)]	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by: _

Approved by: _____ Chang Chang

Project Manager (Henry Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	30-Jan-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calib	ration Record	1-Apr-25
Model No.:	LD-5R				
Serial No.:	972781				
Equipment No.:	SA-01-10	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensiti	vity Adjustment	734 CPM	
Tisch Calibratio	on Orifice No.: <u>3864</u>	After Sensitivi	ity Adjustment	734 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (µg/	m3)	Ma	ss concentration (µ	g/m ³)
	X-axis		 	Y-axis	
1	79.0			135.0	
2	67.0			114.0	
3	60.0			100.0	
Average	68.7			116.3	
	ression of Y on X 		cept, bw =	-9.4729	
	Se	et Correlation F	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$	116.3		
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)		68.7		
Measureing time	e, (min)		60.0		
Set Correlation	Factor, SCF				
SCF = [K=Hig	gh Volume Sampler / Dust Meter, (μ	g/m3)]	1.7		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____

Project Manager (Henry⁴Leung)

Certificate of Calibration

It is certified that the item under calibration has been calibrated by corresponding calibrated High Volume Sampler

Description:	Digital Dust Indicator		Date	of Calibration	1-Apr-25
Manufacturer:	Sibata Scientific Technology LTD.	_	Validity of Calibr	ration Record	1-Jun-25
Model No.:	LD-5R				
Serial No.:	972781				
Equipment No.:	SA-01-10	Sensitivity	0.001 mg/m3	_	
High Volume Sa	ampler No.: A-01-03	Before Sensitiv	vity Adjustment	734 CPM	
Tisch Calibratio	on Orifice No.: 3864	After Sensitivi	ty Adjustment	734 CPM	
	Ca	libration of 1 h	r TSP		
Calibration	Laser Dust Monitor			HVS	
Point	Mass Concentration (µg/	m3)	Mass concentration ($\mu g/m^3$)		g/m ³)
	X-axis			Y-axis	
1	77.0			134.0	
2	65.0			115.0	
3	58.0			101.0	
Average	66.7			116.7	
By Linear Regi Slope , mw = Correlation co			cept, bw =	1.9856	
	Se	t Correlation Fa	actor		
Particaulate Cor	ncentration by High Volume Sampler ($(\mu g/m^3)$		116.7	
Particaulate Cor	ncentration by Dust Meter ($\mu g/m^3$)		66.7		
Measureing time	e, (min)			60.0	
Set Correlation	Factor, SCF				
SCF = [K=Hig	h Volume Sampler / Dust Meter, (μ	g/m3)	1.8		

In-house method in according to the instruction manual:

The Dust Monitor was compared with a calibrated High Volume Sampler and The result was used to generate the Correlation Factor (CF) between the Dust Monitor and High Volume Sampler.

Those filter papers are weighted by HOKLAS laboratory (HPCT Litimed)

Calibrated by:

Approved by: _____

Project Manager (Henry⁴Leung)

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00736 Issue Date : 28 Jun 2024 Report No. Application No. : HP00592 **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Sound Level Calibrator. Equipment No.: : N-16-01 Manufacturer: : Hangzhou Aihua Instruments Co., Ltd. Other information : Model No. AWA6021A Serial No. 1023253 : 27 Jun 2024 Date Received Test Period : 28 Jun 2024 to 28 Jun 2024 : Performance checking for Sound Level Calibrator **Test Requested** Test Method : The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent. **Test conditions** : Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70% Test Result : Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

 \mathcal{C}

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:

Issue Date : 28 Jun 2024

Report No.:00736Application No.:HP00592

Certificate of Calibration

Measuring

20	1110	me	nt
	UILL		
~~~	~ · · P		
•	•		

Sound Calibrator
Brüel & Kjær
TYPE 4231
2326353
N-02-01
Sound Meter
BSWA Technology
BSWA 308
570183
570605
N-12-01

#### Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.1	+ 0.1	± 0.3
114.0	114.1	+ 0.1	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Report No. :	1015 Issue Date : 04 Feb 20	025	
Application No. :	P00868		
	Certificate of Calibration		
Applicant	Cinotech Consultants Limited		
	RM 1710, Technology Park,		
	18 On Lai Street, Shatin, N.T., Hong Kong		
Sample Description	Submitted equipment stated to be Sound Level Calibrator.		
	Equipment No.: : N-16-02		
	Manufacturer: : Hangzhou Aihua Instruments Co., Ltd.		
	Other information : Model No. AWA6021A		
	Serial No. 1023064		
Date Received	28 Jan 2025		
Test Period	03 Feb 2025 to 04 Feb 2025		
Test Requested	Performance checking for Sound Level Calibrator		
Test Method	The Sound Level Meter and Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.		
Test conditions	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%		
Test Result	Refer to the test result(s) on page 2.		

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

 $\mathcal{C}$ 

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

•

:



: 04 Feb 2025

Issue Date

Report No.:01015Application No.:HP00868

# **<u>Certificate of Calibration</u>**

Measuring equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01
Description	Sound Meter
Manufacturer	SVANTEK
Model No.	SVAN 977
Serial No.	92677
Microphone No.	10352
Equipment No.	N-14-01

#### Test Result

[	Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
	94.0	94.2	+ 0.2	± 0.3
	114.0	114.3	+ 0.3	± 0.5

- Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.
  - 2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk



Issue Date : 14 Oct 2024

Report No.:00870Application No.:HP00731

# **Certificate of Calibration**

Applicant

: Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong

Sample Description : Submitted equipment stated to be Integrating Sound Level Meter.

Equipment No.: : N-08-12

Manufacturer: : SVANTEK

Other information	:	Model No.	SVAN 957
		Serial No.	23851
		Microphone No.	22391

Date Received	:	07 Oct 2024
Test Period	:	09 Oct 2024 to 09 Oct 2024
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:



Issue Date : 14 Oct 2024

Report No.:00870Application No.:HP00731

# **Certificate of Calibration**

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

#### Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.0	± 0.0	± 1.5
114.0	114.2	+ 0.2	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 00871



Issue Date : 14 Oct 2024

Application No.HP00732ApplicantCertificate of CalibrationApplicantSample DescriptionFamily DescriptionSubmitted equipment stated to be Integrating Sound Level Meter.Equipment No.:N-12-02

Manufacturer: : BSWA Technology

Other information	:	Model No.	BSWA 308
		Serial No.	570187
		Microphone No.	590079

Date Received	:	07 Oct 2024
Test Period	:	09 Oct 2024 to 09 Oct 2024
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

Remark : 1. Information of the sample description provided by the Applicant.

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:



Issue Date : 14 Oct 2024

Report No.:00871Application No.:HP00732

# **Certificate of Calibration**

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

#### Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	113.7	- 0.3	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 01074



Issue Date : 19 Mar 2025

: HP00912 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-03 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 570188 Microphone No. 570608

Date Received	:	17 Mar 2025
Test Period	:	18 Mar 2025 to 18 Mar 2025
Test Requested	:	Performance checking for Sound Level Meter
Test Method	:	The Sound Level Calibrator has been calibrated in accordance with the documented procedures and using standard and instrument which are recommended by the manufacturer, or equivalent.
Test conditions	:	Room Temperature: 22-25 degree Celsius Relative Humidity: 35-70%
Test Result	:	Refer to the test result(s) on page 2.

: 1. Information of the sample description provided by the Applicant. Remark

2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:



Issue Date : 19 Mar 2025

Report No.:01074Application No.:HP00912

# **Certificate of Calibration**

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

#### Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	93.9	- 0.1	± 1.5
114.0	114.0	± 0.0	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -

Report No.

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

: 01075



Issue Date : 19 Mar 2025

: HP00913 Application No. **Certificate of Calibration** Applicant : Cinotech Consultants Limited RM 1710, Technology Park, 18 On Lai Street, Shatin, N.T., Hong Kong Sample Description : Submitted equipment stated to be Integrating Sound Level Meter. Equipment No.: : N-12-04 Manufacturer: : BSWA Technology Other information : Model No. **BSWA 308** Serial No. 580238 Microphone No. 570605

Date Received	7 Mar 2025	
Test Period	8 Mar 2025 to 18 Mar 2025	
Test Requested	erformance checking for Sound Level	Veter
Test Method	ne Sound Level Calibrator has been ca ocumented procedures and using star ecommended by the manufacturer, or	dard and instrument which are
Test conditions	oom Temperature: 22-25 degree Celsi elative Humidity: 35-70%	us
Test Result	efer to the test result(s) on page 2.	

Remark : 1. Information of the sample description provided by the Applicant.2. The result(s) relate only to the items tested or calibrated.

For and on behalf of HIGH PRECISION CHEMICAL TESTING LIMITED

Lee Wai Kit Laboratory Manager

Rm 1904, Technology Park 18 On Lai Street, Shatin NT, Hong Kong Tel: +852 3841 4388 Website: https://www.hpct.com.hk

:

:



Issue Date : 19 Mar 2025

Report No.:01075Application No.:HP00913

# **Certificate of Calibration**

Measuring

equipment

Description	Sound Calibrator
Manufacturer	Brüel & Kjær
Model No.	TYPE 4231
Serial No.	2326353
Equipment No.	N-02-01

#### Test Result

Reference value, dB	Indication value, dB	Deviation, dB	Allowed deviation, dB
94.0	94.2	+ 0.2	± 1.5
114.0	114.1	+ 0.1	± 1.5

Note : 1. "Instrument Readings" presents the figures shown on item under calibration / checking regardless of equipment precision or significant figures.

2. The indication value was obtained from the average of ten replicated measurement.

- End of report -