

RECALIBRATION **DUE DATE:**

October 17, 2019

ertificate o dibration

Calibration Certification Information

Cal. Date: October 17, 2018 Rootsmeter S/N: 438320

Ta: 294

°K

Operator: Jim Tisch Pa: 755.7

mm Hg

Calibration Model #: TE-5025A

Calibrator S/N: 2154

Run	Vol. Init (m3)	Vol. Final (m3)	ΔVol. (m3)	ΔTime (min)	ΔP (mm Hg)	ΔH (in H2O)
1	1	2	1	1.4590	3.2	2.00
2	3	4	1	1.0410	6.4	4.00
3	5	6	1	0.9310	7.9	5.00
4	7	8	1	0.8840	8.8	5.50
5	9	10	1	0.7320	12.7	8.00

	Data Tabulation						
Vstd	Qstd	$\sqrt{\Delta H \left(\frac{Pa}{Pstd}\right) \left(\frac{Tstd}{Ta}\right)}$		Qa	√∆H(Ta/Pa)		
(m3)	(x-axis)	(y-axis)	Va	(x-axis)	(y-axis)		
1.0035	0.6878	1.4197	0.9958	0.6825	0.8821		
0.9993	0.9599	2.0078	0.9915	0.9525	1.2475		
0.9973	1.0712	2.2448	0.9895	1.0629	1.3948		
0.9961	1.1268	2.3543	0.9884	1.1180	1.4628		
0.9909	1.3536	2.8394	0.9832	1.3432	1.7642		
	m=	2.13015		m=	1.33386		
QSTD[b=	-0.04186	QA	b=	-0.02601		
	r=	0.99996		r=	0.99996		

	Calculation	ıs			
Vstd=	std= ΔVol((Pa-ΔP)/Pstd)(Tstd/Ta)		ΔVol((Pa-ΔP)/Pa)		
Qstd=	Vstd/ΔTime	Qa=	Va/ΔTime		
For subsequent flow rate calculations:					
Qstd=	$1/m\left(\left(\sqrt{\Delta H\left(\frac{Pa}{Pstd}\right)\left(\frac{Tstd}{Ta}\right)}\right)-b\right)$	Qa=	$1/m\left(\left(\sqrt{\Delta H\left(Ta/Pa\right)}\right)-b\right)$		

	Standard Conditions
Tstd:	298.15 °K
Pstd:	760 mm Hg
	Key
ΔH: calibrato	r manometer reading (in H2O)
ΔP: rootsmet	er manometer reading (mm Hg)
Ta: actual ab	solute temperature (°K)
Pa: actual ba	rometric pressure (mm Hg)
b: intercept	
m: slope	

RECALIBRATION

US EPA recommends annual recalibration per 1998 40 Code of Federal Regulations Part 50 to 51, Appendix B to Part 50, Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30

sch Environmental, Inc.

45 South Miami Avenue

illage of Cleves, OH 45002

www.tisch-env.com

TOLL FREE: (877)263-7610

FAX: (513)467-9009

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail: matlab@fugro.com Website: www.fugro.com

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

4037

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07 Date of Calibration: 24-Mar-19

Location: KTD1a

Next Calibration Date: 23-Jun-19

Brand:

Tisch

Technician: Mike Kan

Model:

TE-5170

S/N:

CONDITIONS

Sea Level Pressure (hPa):

1018.0

Corrected Pressure (mm Hg):

764

Temperature (°C):

17.5

Temperature (K):

291

CALIBRATION ORIFICE

Make:

Tisch

Qstd Slope:

2.13015

Model:

TE-5025A

Qstd Intercept:

-0.04186

Calibration Date:

17-Oct-18

Expiry Date:

S/N:

2154

17-Oct-19

	CAL	IBKAI	101	45
_			_	

				0,11111					
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	
riate ivo.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	6.80	-6.00	12.800	1.725	42.00	42.64	Slope =	30.2225	
13	4.20	-5.60	9.800	1.512	36.00	36.55	Intercept =	-9.7073	
10	3.60	-3.40	7.000	1.281	28.00	28.43	Corr. coeff.:	0.9954	
7	2.40	-2.20	4.600	1.042	20.00	20.30			
5	1.20	-1.60	2.800	0.817	16.00	16.24			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

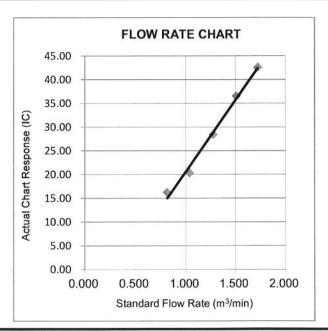
Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

WAN KA HO **Project Consultant** Report Date: 25 Mar 2019

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 Fax E-mail : matlab@fugro.com Website: www.fugro.com

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 24-Mar-19

Location: KTD2b

Next Calibration Date: 23-Jun-19

Brand:

Tisch

Model:

TE-5170

Technician: Mike Kan

CONDITIONS

3838

Sea Level Pressure (hPa):

1018.0

Corrected Pressure (mm Hg):

764

Temperature (°C):

17.5

Temperature (K):

291

CALIBRATION ORIFICE

Make:

Tisch

S/N:

Qstd Slope:

2.13015

Model:

TE-5025A

Qstd Intercept:

-0.04186

Calibration Date:

17-Oct-18

Expiry Date:

17-Oct-19

S/N: 2154

CALIBRATIONS

The second secon	CALIBRATIONS								
Plate No.	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	
Flate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	7.00	-6.40	13.400	1.764	54.00	54.82	Slope =	28.9732	
13	5.20	-4.80	10.000	1.527	46.00	46.70	Intercept =	3.7516	
10	3.80	-3.20	7.000	1.281	42.00	42.64	Corr. coeff.=	0.9935	
7	2.60	-2.00	4.600	1.042	34.00	34.52			
5	1.40	-1.40	2.800	0.817	26.00	26.40			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

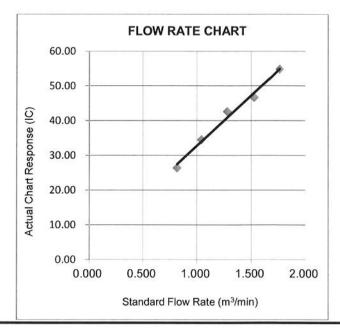
Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)


m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

Project Consultant

Report Date: 25 Mar 2019

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project: Environmantal Monitoring Works For Contract No. KLN/2015/07

Date of Calibration: 24-Mar-19

Location: KER1b

Next Calibration Date: 23-Jun-19

Brand:

Tisch

Model:

TE-5170

3482

Technician: Mike Kan

CONDITIONS

Sea Level Pressure (hPa):

1018.0 Corrected Pressure (mm Hg): 764

Temperature (°C):

17.5

Temperature (K):

291

CALIBRATION ORIFICE

Make:

Tisch

S/N:

Qstd Slope:

2.13015

Model: Calibration Date: TE-5025A 17-Oct-18 **Qstd Intercept:**

-0.04186

Expiry Date:

17-Oct-19

S/N:

2154

43755)
-------	---

	40100								
BL 4 No	H2O (L)	H2O (R)	H2O	Qstd	1	IC		LINEAR	
Plate No.	(in)	(in)	(in)	(m³/min)	(chart)	(corrected)	F	REGRESSION	
18	7.20	-6.20	13.400	1.764	44.00	44.67	Slope =	32.7929	
13	5.40	-5.40	10.800	1.586	38.00	38.58	Intercept =	-13.5339	
10	3.20	-3.60	6.800	1.262	26.00	26.40	Corr. coeff.:	0.9973	
7	2.60	-2.20	4.800	1.064	22.00	22.33			
5	1.20	-1.80	3.000	0.845	14.00	14.21			

Calculations:

Qstd = 1/m[Sqrt(H2O(Pa/Pstd)(Tstd/Ta))-b]

IC = I[Sqrt(Pa/Pstd)(Tstd/Ta)]

Qstd = standard flow rate

IC = corrected chart response

I = actual chart response

m = calibrator Qstd slope

b = calibrator Qstd intercept

Ta = actual temperature during calibration (deg K)

Pa = actual pressure during calibration (mm Hg)

Tstd = 298 deg K

Pstd = 760 mm Hg

For subsequent calculation of sampler flow:

1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)

m = sampler slope

b = sampler intercept

I = chart response

Tav = daily average temperature

Pav = daily average pressure

FLOW RATE CHART 50.00 45.00 40.00 35.00 Actual Chart Response (IC) 30.00 25.00 20.00 15.00 10.00 5.00 0.00 2.000 0.000 0.500 1.000 1.500 Standard Flow Rate (m3/min)

7. R. 1 WAN KA HO

Project Consultant

Report Date: 25 Mar 2019

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number

1488269 V006-03

Firmware revision

CEL -251

Preamplifier Type:-

CEL-495

Microphone Type:-Serial Number

2869

Serial Number

004065

Instrument Class/Type:-

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters) IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

Test Conditions:-

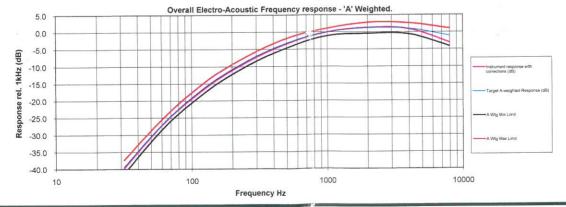
30 °C 58 %RH Test Engineer:-Date of Issue:-

Chris Taylor

1003 mBar

September 7, 2018

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.


Test Summary:-

All Tests Pass Self Generated Noise Test All Tests Pass Electrical Signal Test Of Frequency Weightings **All Tests Pass** Frequency & Time Weightings At 1 kHz All Tests Pass Level Linearity On The Reference Level Range **All Tests Pass** Toneburst Response Test **All Tests Pass** C-peak Sound Levels **All Tests Pass** Overload Indication **All Tests Pass** Acoustic Tests

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella UK

Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom

415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA

Toll Free (800) 366-2966 Tel: +1 (716) 276 3040 E-mail: info@casellausa.com

Ideal Industries India Pvt.Ltd. 229-230, Spazedge, Tower-B Sohna Road, Sector-47, Gurgaon-122001, Haryana, India

Tel: +91 124 4495100 F-mail: casella sales@ideal-industries.in

Casella China

Ideal Industries China Room 305, Building 1, No.1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Casella Australia

Email: australia@casellasolutions.com

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number Firmware revision 1488287 V006-03

Microphone Type:-

CEL-251

Preamplifier Type:-

CEL-495

Serial Number

2508

Serial Number

004061

Instrument Class/Type:-

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters) IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.

Test Conditions:-

31 °c

Test Engineer:-Date of Issue:-

Stephen Potten

52 %RH 1000 mBar August 30, 2018

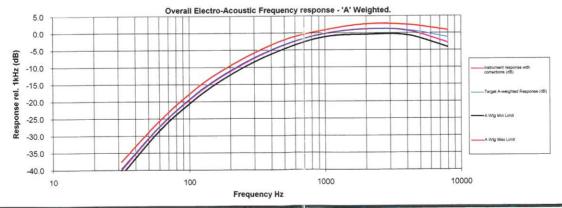
Declaration of conformity:-

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.

Test Summary:-

Self Generated Noise Test Electrical Signal Test Of Frequency Weightings Frequency & Time Weightings At 1 kHz Level Linearity On The Reference Level Range Toneburst Response Test C-peak Sound Levels Overload Indication Acoustic Tests

All Tests Pass All Tests Pass All Tests Pass **All Tests Pass**


> All Tests Pass **All Tests Pass**

> All Tests Pass **All Tests Pass**

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom

Casella USA

415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA

Casella India

Ideal Industries India Pvt.Ltd. 229-230, Spazedge, Tower -B Sohna Road, Sector-47, Gurgaon-122001, Haryana , India

Tel: +91 124 4495100 F-mail: casella.sales@ideal-industries.in

Casella China

Ideal Industries China Room 305, Building 1, No.1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Casella Australia

Email: australia@casellasolutions.com

Certificate of Conformity and Calibration

Instrument Model:-

CEL-633A

Serial Number Firmware revision 1488289 V006-03

Microphone Type:-

CEL-251

Preamplifier Type:-

CEL-495

Serial Number

2706

Serial Number

003917

Instrument Class/Type:-

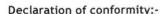
1

Applicable standards:-

IEC 61672: 2002 / EN 60651 (Electroacoustics - Sound Level Meters)

IEC 60651 1979 (Sound Level Meters), ANSI S1.4: 1983 (Specifications For Sound Level Meters)

Note:- The test sequences performed in this report are in accordance with the current Sound level meter Standard - IEC61672. The combination of tests performed are considered to confirm the products electro-acoustic performance to all applicable standards including superceeded Sound Level Meter Standards - IEC60651 and IEC60804.


Test Conditions:-

31 °c 51 %RH 1000 mBar Test Engineer:-

Chris Taylor

Date of Issue:-

September 10, 2018

This test certificate confirms that the instrument specified above has been successfully tested to comply with the manufacturer's published specifications. Tests are performed using equipment traceable to national standards in accordance with Casella's ISO 9001:2008 quality procedures. This product is certified as being compliant to the requirements of the CE Directive.

Test Summary:-

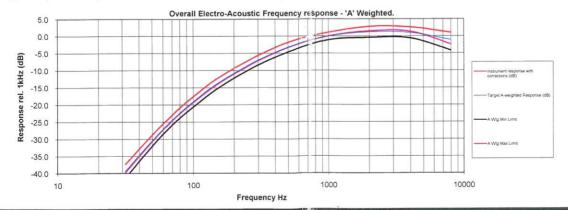
Self Generated Noise Test Electrical Signal Test Of Frequency Weightings Frequency & Time Weightings At 1 kHz Level Linearity On The Reference Level Range Toneburst Response Test C-peak Sound Levels Overload Indication Acoustic Tests

All Tests Pass **All Tests Pass**

All Tests Pass **All Tests Pass**

All Tests Pass

All Tests Pass


All Tests Pass

All Tests Pass

Combined Electro-Acoustic Frequency Response - A Weighted

Combined Electro-Acoustic Frequency Response - A Weighted (IEC 61672-3:2006)

The following A-Weighted frequency response graph shows this instruments overall frequency response based upon the application of multi-frequency pressure field calibrations. The microphones Pressure to Free field correction coefficients are applied to pressure response. Reference level taken at 1kHz.

Casella UK

Regent House, Wolseley Road, Kempston, Bedford MK42 7JY United Kingdom

Tel: +44 (0) 1234 844100 Fax: +44(0) 1234 841490 E-mail: info@casellasoluti

Casella USA

415 Lawrence Bell Drive, Unit 4 Buffalo, NY 14221, USA

Toll Free (800) 366-2966 Tel: +1 (716) 276 3040 E-mail: info@casellausa.com

Ideal Industries India Pvt.Ltd. 229-230, Spazedge, Tower-B Sohna Road, Sector-47, Gurgaon-122001, Haiyana , India

Tel: +91 124 4495100

Ideal Industries China Room 305, Building 1, No.1279, Chuanqiao Rd, Pudong New District, Shanghai, China

Tel: +86-21-31263188 Fax: +86-21-61605906 Email: info@casellasolutions.cn

Ideal Industries (Aust) PTY. LTD Unit 17, 35 Dunlop Rd, Mulgrave Vic. 3170, Australia.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

Fax : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Report no.:

183057CA185248

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model CEL-120/1)

Serial No.

4358250

Equipment ID

N/A

Next Calibration Date :

02-Jul-2019

Specification Limit

EN 60942: 2003 Type 1

Laboratory Information

Description

Reference Sound level meter

Equipment ID. :

R-119-1

Date of Calibration:

03-Jul-2018

Ambient Temperature :

°C.

Calibration Location:

Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)	
94dB	0.0 dB	±0.4dB	
114dB	0.1 dB		

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report no.: 183057CA185294

Page 1 of 1

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Project: Calibration Services

Details of Unit Under Test, UUT

Description

Sound Calibrator

Manufacturer

Casella (Model no. CEL-120/1)

Serial No.

5230736

Equipment ID

FY-SLC-01

Next Calibration Date

18-Jul-2019

Specification Limit

EN 60942: 2003 Type 1

Laboratory Information

Description

Reference Sound level meter

Equipment ID.

R-119-1

Date of Calibration:

19-Jul-2018

Ambient Temperature: 22 °C

Calibration Location:

Calibration Laboratory of FTS

Method Used

By direct comparison

Calibration Results:

Parameters (Settin	ng of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB		0.0 dB	10.4dB
114dB		-0.2 dB	±0.4dB

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.

Checked by : William Date	: 25 -7 - 2018 Certified by :	Date: 73.7.0001-
CA-R-297 (22/07/2009)	Chan Ch	nun Wai (Manager)

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Tel : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 183057CA185180(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: MateriaLab Consultants Ltd.

Project: Calibration Services

Details of Unit Under Test, UUT

Description Anemometer

Manufacturer: Benetech

Model No.

GM816

Serial No.

13372555

Equipment ID.:

N/A

Next Calibration Date :

08-Jun-2019

Laboratory Information

Details of Reference Equipment -

Description : Reference Anemometer

Equipment ID.:

R-101-4

Date of Calibration

09-Jun-2018

Ambient Temperature

22 °C

Calibration Location

Calibration Laboratory of FTS

Method Used : By direct Comparison

:

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.96	2.2	0.2
4.04	4.1	0.1
6.05	6.2	0.2
8.02	7.9	-0.1
10.06	9.7	-0.4

Remark:

1. The equipment being used in this calibration is traceable to recognized National Standards.

Milliam Date: 12-6-2018 Certified by: Checked by :_ CA-R-297 (22/07/2009) Chan Chun Wai (Manager)

Fugro Development Centre. 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

+852 2450 8233 Fax : +852 2450 6138 E-mail: matlab@fugro.com Website: www.fugro.com

Report No.: 182933CA185214(2)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client: Materialab Consultants Ltd.

Room 723 & 725, 7F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T.

Project: **Calibration Services**

Details of Unit Under Test, UUT

Description

Comfort Level Probe

Manufacturer

Testo

Model No.

Serial No.

Meter Probe 480 409 61003846 03216409

Equipment ID

N/A

.

Next Calibration Due Date

22-Aug-2019

Laboratory Information

Details of Reference Equipment -

Description

: Reference Anemometer

Equipment ID.: R-101-4

Date of Calibration

23-Aug-2018

Ambient Temperature

20± 2 °C

Calibration Location

: Calibration Laboratory of FTS

Method Used: By direct Comparison

Calibration Results:

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
1.05	1.06	0.01
3.02	3.06	0.04
5.04	5.07	0.03

Remarks:

- 1. The equipment being used in this calibration is traceable to recognized National Standards.
- 2. The reported readings in this calibration are an average from 10 trials.

Millian Date: 31-8-2018 Certified by: FT Loung Date: 31-8-2018 Checked by: CA-R-297 (22/07/2009) Leung Kwok Tai (Assistant Manager)