Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Report No.: 0405/15/ED/1258A

MONTHLY EM&A REPORT

June 2020

- Client **Civil Engineering and Development** : Department, HKSAR Contract No. KLN/2015/07 • **Contract Name :** Environmental Monitoring Works for Contract KL/2014/03 - Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway **Report No.** 0405/15/ED/1258A 2 New Distributor Roads Serving the Planned Kai Tak EP-337/2009 **Development Area** EP-339/2009/A Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport
- EP-451/2013 Trunk Road T2

 Prepared by
 :
 Toby K. H. Wan

 Reviewed by
 :
 Cyrus C. Y. Lai

 Certified by
 :
 Colin K. L. Yung

 Environmental Team Leader
 MateriaLab Consultants Limited

Ref.: CEDKTDS3EM00_0_0497L.20

13 July 2020

By Post and Email

Hyder-Meinhardt Joint Venture 17/F, Two Harbour Square, 180 Wai Yip Street, Kwun Tong Kowloon, Hong Kong

Attention: Mr. Pat Lam

Dear Mr. Lam,

Re: Contract No. KL/2014/03 – Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway <u>Monthly EM&A Report for June 2020</u>

Reference is made to the Environmental Team's submission of the Monthly EM&A Report for June 2020 (Report No. 0405/15/ED/1258A) we received by e-mail on 13 July 2020.

Please be informed that we have no adverse comment on the captioned report. We hereby verify the captioned submission according to Condition 3.3 of EP-337/2009, Condition 3.3 of EP-339/2009/A and Condition 3.4 of EP-451/2013.

Thank you for your attention. Please do not hesitate to contact us should you have any queries.

Yours sincerely, For and on behalf of Ramboll Hong Kong Limited

Manson Yeung Independent Environmental Checker

c.c.

CEDD Attn.: Mr. Simon Kwok Fugro Attn.: Mr. Colin Yung CRBC Attn.: Mr. Dickey Yau

Fax: 2739 0076 By email Fax: 2283 1689

Q:\Projects\CEDKTDS3EM00\02_Proj_Mgt\02_Corr\CEDKTDS3EM00_0_0497L.20.doc

TABLE OF CONTENTS

EXE(CUTIVE SUMMARY	1
1.	INTRODUCTION	2
2.	AIR QUALITY	5
3.	NOISE	10
4.	LANDSCAPE AND VISUAL	14
5.	WASTE MANAGEMENT	15
6.	SITE INSPECTION	16
7.	ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE	17
8.	IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES	18
9.	FUTURE KEY ISSUES	19
10.	CONCLUSIONS	20

FIGURES

Figure 1	Project General Layout
Figure 2	Air and Noise Monitoring Locations

LIST OF APPENDICES

Appendix A	Construction Programme
------------	------------------------

- Appendix B Project Organization Chart
- Appendix C Action and Limit Levels for Air Quality and Noise
- Appendix D Calibration Certificates of Monitoring Equipment
- Appendix E Environmental Monitoring Schedules
- Appendix F Air Quality Monitoring Data
- Appendix G Noise Monitoring Data
- Appendix H Event Action Plans
- Appendix I Waste Flow Table
- Appendix J Environmental Mitigation Implementation Schedule (EMIS)
- Appendix K Weather and Meteorological Conditions during Reporting Month
- Appendix L Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecutions
- Appendix M Summary of Site Audit in the Reporting Month
- Appendix N Outstanding Issues and Deficiencies

EXECUTIVE SUMMARY

- i. The Civil Engineering and Development Department HKSAR has appointed MateriaLab Consultants Limited (MCL) to undertake the Environmental Team services for the Project and implement the EM&A works.
- ii. This Monthly EM&A report presents the environmental monitoring and audit works for the period between 1 June and 30 June 2020. As informed by the Contractor, major activities in the reporting month were:
 - Excavation and laying of drainage pipe and manhole;
 - Construction of SUS structure;
 - · Construction of District Cooling System;
 - Utility laying;
 - · Construction of road base and road pavement;
 - Landscape works Irrigation system, tree and shrub planting.

Breaches of the Action and Limit Levels

iii. No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2c and KER1b in the reporting month.

Complaint, Notification of Summons and Successful Prosecution

iv. No environmental complaint, notification of summons and successful prosecution were received in the reporting month.

Reporting Changes

v. There was no reporting change in the reporting month.

Future Key Issues

vi. The key issues to be considered in the coming reporting month include:

Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impacts.

1. INTRODUCTION

1.1 Background

- 1.1.1 The Kai Tak Development is located in the south-eastern part of Kowloon Peninsula of the HKSAR, comprising the apron and runway areas of the former Kai Tak Airport and existing waterfront areas at To Kwa Wan, Ma Tau Kok, Kowloon Bay, Kwun Tong and Cha Kwo Ling.
- 1.1.2 Contract No. KL/2014/03 is the works package to construct an approximately 420m long supporting underground structure (SUS) underneath Shing Cheong Road and Cheung Yip Street. The EM&A programme under this Contract is governed by three EPs (EP-337/2009, EP-339/2009/A and EP-451/2013) and two EM&A Manuals (AEIAR-130/2009 and AEIAR-174/2013). The Works to be executed under this Contract and corresponding EPs include but not be limited to the following main items:

EP-451/2013 – Trunk Road T2

(i) Construction of approximately 420m long supporting underground structure (SUS) including diaphragm walls, barrettes, piled foundation, top and bottom slabs, end wall and adits underneath Shing Cheong Road and Cheung Yip Street;

EP-337/2009 – New Distributor Roads Serving the Planned Kai Tak Development

- (ii) Widening and re-alignment of Cheung Yip Street of approximately 330m long and associated footpaths;
- (iii) Demolition, reconstruction and widening of Shing Cheong Road of approximately 410m long and associated footpaths;
- (iv) Construction of drainage outfall and modification of existing seawall;
- (v) Construction of ancillary works including surface drainage, sewerage, water, fire fighting, street lighting, street furniture, road marking, road signage, utilities and services, irrigation and landscape works.

EP-339/2009/A – Decommissioning of the Remaining Parts (Ex-GFS Building, Radar Station and Hong Kong Aviation Club) of the former Kai Tak Airport

(vi) Demolition of RADAR Tower and guard house;

Other works not covered by any EP

- (vii) Construction of two subways between Phase II of New Acute Hospital (Site A) and Hong Kong Children's Hospital (Site C), and between Phase I of New Acute Hospital (Site B) and Site C;
- (viii) Construction of District Cooling System (DCS) along Cheung Yip Street and Shing Cheong Road
- 1.1.3 The location and boundary of the site is shown in **Figure 1**.
- 1.1.4 This Monthly EM&A report is required under EP-337/2009 Condition 3.3, EP-339/2009/A Condition 3.3 and EP-451/2013 Condition 3.4. It is to report the results and findings of the EM&A programme required in the EM&A Manuals.
- 1.1.5 This is the 52nd monthly EM&A Report which summarize the impact monitoring results and audit findings for the Project within the period between 1 June and 30 June 2020.

1.2 **Project Organization**

- 1.2.1 The project proponent was the Civil Engineering and Development Department, HKSAR (CEDD). Hyder Meinhardt Joint Venture (HMJV) was commissioned by CEDD as the Engineer for the Project. Ramboll Hong Kong Limited was commissioned as the Independent Environmental Checker (IEC). China Road and Bridge Corporation (Hong Kong) (CRBC) was appointed as the main contractor for the construction works under the contract KL/2014/03. MateriaLab Consultants Limited (MCL) was appointed as the Environmental Team (ET) by CEDD to implement the EM&A programme for the Project.
- 1.2.2 The organization structure is shown in **Appendix B**. The key personnel contact names and numbers for the Project are summarized in **Table 1.1**.

Party	Position	Name	Telephone	Fax
Project Proponent (CEDD)	Engineer	Mr. Simon Kwok	3842 7140	2739 0076
Engineer's Representative (HMJV)	Senior Resident Engineer	Mr. Pat Lam	3742 3803	3742 3899
IEC (Ramboll Hong Kong Limited)	Independent Environmental Checker	Mr. Manson Yeung	9700 6767	3465 2899
Main Contractor (CRBC)	Site Agent	Mr. Yau Kwok Kiu, Dickey	5699 4503	2283 1689
	Environmental Officer	Miss. Elena Lai	6841 3324	2283 1689
ET (MCL)	Environmental Team Leader	Mr. Colin Yung	3565 4114	3565 4160

 Table 1.1
 Contact Information of Key Personnel

1.3 Construction Programme and Activities

- 1.3.1 The construction of the Project commenced in February 2016 and is expected to complete in 2020. The construction programme is shown in **Appendix A**.
- 1.3.2 A summary of the major construction activities undertaken in the reporting month were:
 - · Excavation and laying of drainage pipe and manhole;
 - Construction of SUS structure;
 - Construction of District Cooling System;
 - Utility laying;
 - · Construction of road base and road pavement;
 - Landscape works Irrigation system, tree and shrub planting.

MATERIALAB CONSULTANTS LIMITEDRoom 723 & 725, 7/F, Block B,Tel: +852 2450 8238Profit Industrial Building,Fax: +852 2450 80321-15 Kwai Fung Crescent, Kwai Fong,E-mail: mcl@fugro.comHong Kong.Website: www.fugro.com

1.4 Inter-relationship with the environmental protection/ mitigation measures with the construction programme

- 1.4.1 According to the construction activities in the construction programme mentioned in Section 1.3.2, the following environmental protection/ mitigation measures including Air Quality Impact, Construction Noise Impact, Water Quality Impact, Chemical and Waste Management, Landscape and Visual Impact shall be implemented:
 - · Sufficient watering of the works site with the active dust emitting activities;
 - · Limitation of the speed for vehicles on unpaved site roads;
 - · Properly cover or enclosure of the stockpiles and dusty materials;
 - · Good site practices on loading dusty materials;
 - · Providing sufficient vehicles washing facilities at every vehicle exit point;
 - Good maintenance to the plant and equipment;
 - · Use of quieter plant and Quality Powered Mechanical Equipment (QPME);
 - · Use of acoustic fabric and noise barrier;
 - Using the approved Non-road Mobile Machineries (NRMMs);
 - · Proper storage and handling of chemical;
 - Appropriate desilting, oil interceptors or sedimentation devices provided on site for treatment before discharge;
 - · Onsite waste sorting and implementation of trip ticket system;
 - Training of the site personnel in proper waste management and chemical waste handling procedures;
 - · Proper storage of the construction materials;
 - · Erection of decorative screen hoarding;
 - · Strictly following the Environmental Permits and Licenses;
 - Provide sufficient mitigation measures as recommended in Approved EIA Reports

1.5 Status of Environmental Licences, Notifications and Permits

1.5.1 A summary of the relevant environmental licenses, permits and/or notifications on environmental protection for this Contract is presented in **Table 1.2**.

Table 1.2 Relevant Environmental Licenses, Permits and/or Notifications

Environmental License / Permit / Notification	Reference Number	Valid From	Valid Till
Environmental Permit	EP-337/2009 EP-339/2009/A EP-451/2013	23 April 2009 18 June 2009 19 September 2013	Not Applicable Not Applicable Not Applicable
Notification pursuant to Air Pollution (Construction Dust) Regulation	395601	4 December 2015	Not Applicable
Billing Account for Waste Disposal	A/C No.: 7023814	22 December 2015	Not Applicable
Construction Noise	GW-RE1017-19	16 December 2019	10 June 2020
Permit	GW-RE0494-20	11 June 2020	10 December 2020
Wastewater Discharge License	WT00023125-2015	6 January 2016	31 January 2021
Chemical Waste Producer License	5213-247-C1232-12	23 November 2015	Not Applicable

2. AIR QUALITY

2.1 Monitoring Requirement

In accordance with the approved EM&A Manuals, 24-hour Total Suspended Particulates (TSP) level at the designated air quality monitoring station is required. Impact 24-hour TSP monitoring should be carried out at least once every 6 days. In case of complaints, 1-hour TSP monitoring should be carried out at least 3 times per 6 days when the highest dust impacts are likely to occur. The Action and Limit Levels of the air quality monitoring are given in **Appendix C**.

2.2 Monitoring Equipment

The 24-hour TSP air quality monitoring was performed using High Volume Air Samplers (HVS) located at each of the designated monitoring station. Portable TSP Monitors would be used in case of complaints for 1-hour TSP monitoring.

Table 2.1 summarizes the equipment used in air quality monitoring.

ltem	Location	Brand	Model	Equipment	Number			
			TE-5170 (TSP)	High Volume Sampler				
			TE-300-310X	- Mass Flow Controller	2037			
1	KER1b	Tisch	TE-5005X	- Blower Motor Assembly	3477			
			TE-5007X	- Mechanical Timer	4488			
			TE-5009X	- Continuous Flow Recorder	4371			
2			TE-5170 (TSP)	High Volume Sampler				
	KTD1a		TE-300-310X	- Mass Flow Controller	2524			
		Tisch	TE-5005X	- Blower Motor Assembly	4037			
			TE-5007X	- Mechanical Timer	5160			
			TE-5009X	- Continuous Flow Recorder	4377			
	3 KTD2c Tisch TE					TE-5170 (TSP)	High Volume Sampler	
			TE-300-310X	- Mass Flow Controller	2618			
3		TE-5005X	- Blower Motor Assembly	3838				
			G3031	- Mechanical Timer	2251			
			G1051	- Continuous Flow Recorder	2307			
4		Tisch	TE-5025A	HVS Sampler Calibrator	438320/2456			
5		*Sibata	Model LD-3B	Sibata Portable TSP Monitors	NA			

Table 2.1 Air Quality Monitoring Equipment

Note:

No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted.

2.3 Monitoring Methodology

2.3.1 24-hour TSP air quality monitoring

HVS Installation

The following guidelines were adopted during the installation of HVS:

- Sufficient support is provided to secure the samplers against gusty wind.
- No two samplers are placed less than 2 meters apart.

- The distance between the sampler and an obstacle, such as buildings, is at least twice the height that the obstacle protrudes above the sampler.
- A minimum of 2 meters of separation from walls, parapets and penthouses is required for rooftop samples.
- A minimum of 2 meters separation from any supporting structure, measured horizontally is required.
- No furnaces or incineration flues are nearby.
- Airflow around the samplers is unrestricted.
- The samplers are more than 20 meters from the drip line.
- Any wire fence and gate, to protect the sampler, should not cause any obstruction during monitoring.

Filters Preparation

Fiberglass filters (provided by the HOKLAS accredited laboratory) shall be used (Note: these filters have a collection efficiency of larger than 99% for particles of 0.3 µm diameter). A HOKLAS accredited laboratory (ALS Technichem (HK) Pty Ltd.) is responsible for the preparation of 24-hr conditioned and pre-weighed filter papers for monitoring team.

All filters are equilibrated in the conditioning environment for 24 hours before weighing. The conditioning environment temperature is around 25°C and not variable by more than \pm 3°C; the relative humidity (RH) is < 50% and not variable by more than \pm 5%. A convenient working RH is 40%.

Operating / Analytical Procedures

Operating / analytical procedures for the air quality monitoring are highlighted as follows:

- Prior to the commencement of the dust sampling, the flow rate of the HVS are properly set (between 0.6 m³/min and 1.7 m³/min) in accordance with the EM&A manual. The flow rate shall be indicated on the flow rate chart.
- The power supply shall be checked to ensure the samplers worked properly.
- On sampling, the samplers shall be operated for 5 minutes to establish thermal equilibrium before placing any filter media at the designated air quality monitoring station.
- The filter holding frame is then removed by loosening the four nuts and carefully a weighted and conditioned filter is centered with the stamped number upwards, on a supporting screen.
- The filter shall be aligned on the screen so that the gasket formed an airtight seal on the outer edges of the filter. Then the filter holding frame is tightened to the filter holder with swing bolts. The applied pressure should be sufficient to avoid air leakage at the edges.
- The shelter lid shall be closed and secured with the aluminum strip.
- The timer is then programmed. Information shall be recorded on the record sheet, which included the starting time, the weather condition and the filter number (the initial weight of the filter paper can be found out by using the filter number).
- After sampling, the filter shall be removed and sent to laboratory for weighing. The elapsed time is also recorded.
- Before weighing, all filters are equilibrated in a conditioning environment for 24 hours. The conditioning environment temperature should be between 25°C and 30°C and not vary by more than ±3°C; the relative humidity (RH) should be < 50% and not vary by more than ±5%. A convenient working RH is 40%. Weighing results are returned to MCL for further analysis of TSP concentrations collected by each filter.

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

2.3.2 1-hour TSP air quality monitoring

Operating / Analytical Procedures

The measuring procedures of the 1-hr dust meter are in accordance with the Manufacturer's instruction Manual as follows:

- Pull up the air sampling inlet cover
- Change the Mode 0 to BG once
- Push Start/Stop switch once
- Turn the knob to SENSI.ADJ and press it
- Push Start/Stop switch once
- Return the knob to the position MEASURE slowly
- Push the timer set switch to set measuring time
- Remove the cap and make a measurement

2.4 Maintenance / Calibration

2.4.1 24-hour TSP air quality monitoring

The following maintenance / calibration are required for the HVS:

- The high volume motors and their accessories are properly maintained. Appropriate maintenance such as routine motor brushes replacement and electrical wiring checking are made to ensure that the equipments and necessary power supply are in good working condition.
- All HVS shall be calibrated (five point calibration) using Calibration Kit upon installation and thereafter in every 3 months.
- A copy of the calibration certificates for the HVS and calibrator are provided in Appendix D.
- 2.4.2 1-hour TSP air quality monitoring

The portable TSP monitor should be calibrated at 1 year intervals

2.5 Monitoring Locations

- 2.5.1 According to the EM&A Manual, three air quality monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two air quality monitoring locations, which are identified in Cha Kwo Ling area, are farther than 500m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 2.5.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for air quality monitoring.
- 2.5.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring location KER1b for air quality monitoring.

- 2.5.4 According to the approved relocation of monitoring location KTD2a (EPD reference: () in EP2/K19/A/21 pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring location KTD2b for air quality monitoring.
- 2.5.5 According to the approved relocation of monitoring location KTD2b (EPD reference: () in EP2/K19/A/21 pt.7), the monitoring location KTD2b are proposed to be relocated by alternative monitoring location KTD2c for air quality monitoring.
- 2.5.6 The most updated locations are summarized in **Table 2.2** and shown in **Figure 2**.

Table 2.2 Location of Air Quality Monitoring Station

Monitoring Station	Location		
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)		
KTD2c	G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)		
KER1b Site Boundary at Cheung Yip Street			

2.6 Results and Observations

- 2.6.1 The schedule of air quality monitoring in reporting month is provided in **Appendix E**.
- 2.6.2 No Action / Limit Level exceedance was recorded for 24-hr TSP at KTD1a, KTD2c and KER1b in the reporting month.
- 2.6.3 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 2.6.4 During the reporting month, major dust sources including loading and unloading of C&D wastes, vehicles movement were observed in the site. Non-project related construction activities at the nearby construction site and road traffic along Shing Fung Road, Shing Cheong Road, Cheung Yip Street and the Kwun Tong By-pass were observed. The above factors may affect the monitoring results.
- 2.6.5 The weather conditions during the monitoring are provided in **Appendix K**.
- 2.6.6 The monitoring data of 24-hr TSP are summarized in **Table 2.3**. Detailed monitoring data are presented in **Appendix F**.

Table 2.5	Summary of 24	-III I SF WOIIILOI	ing Results		
Parameter	Monitoring Station	Average (µg/m³)	Range (µg/ m³)	Action Level (µg/ m ³)	Limit Level (µg/ m ³)
24-hr TSP	KTD1a	34	24-51	177	
in µg/m ³	KTD2c	41	13-67	157	260
iii µg/iii°	KER1b	96	34-162	172	

Table 2.3	Summary of 24-hr TSP Monitoring Results
-----------	---

2.6.7 The Event and Action Plan for air quality is given in **Appendix H**.

2.7 Comparison of 24-hr TSP Monitoring Results with EIA Predictions

2.7.1 The monitoring data of 24-hr TSP was compared with the EIA predictions as summarized in **Table 2.4**.

Table 2.4	Comparison of 24-hr TSP data with EIA predictions
-----------	---

Monitoring Station	Receiver Reference	Predicted Maximum 24- hour TSP Concentration (µg/m³)	24-hour TSP concentration in June 2020 (µg/m³)	Average 24-hour TSP concentration in June 2020 (µg/m³)
KTD1a	KTD3	126	24-51	34
KTD2c	-	-	13-67	41
KER1b	KTD6	169	34-162	96

Note:

For KTD2c, there was no receiver reference in the EIA report, AEIAR-174/2013. Predicted Maximum TSP Concentration extracted from Table 4.14 of EIA Report, AEIAR-174/2013.

2.7.2 The 24-hour TSP monitoring results at KTD1a and KER1b were below the Predicted Maximum 24-hr TSP concentration in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

3. NOISE

3.1 Monitoring Requirement

3.1.1 In accordance with the approved EM&A Manuals, Leq (30min) monitoring is conducted for at least once a week during the construction phase between 0700 and 1900 on normal weekdays at the designated monitoring locations.

3.2 Monitoring Equipment

- 3.2.1 The sound level meter used in noise monitoring will comply with the International Electrotechnical Commission Publication (IEC) 651:1979 (Type 1) and 804:1985 (Type 1) specifications as referred to in the Technical Memorandum issued under the Noise Control Ordinance (NCO).
- 3.2.2 Sound level calibrator will be used for the on-site calibration of the meter. This calibrator complies with the IEC Publication 942 (1988) Class 1 and ANSI S1.40 1984. Noise measurements were only accepted to be valid if the calibration levels from before and after the measurement agree to within 1.0dB.
- 3.2.3 Measurements shall be recorded to the nearest 0.1dB. Sound level meters are programmed to measure A-weighted equivalent continuous sound pressure level at 30-minute intervals between 0700 and 1900 on normal weekdays at least once a week when construction activities are underway.

Table 3.1 summarizes the noise monitoring equipment model being used for this project.

Item	Brand	Model	Equipment	Serial Number
1	Casella	CEL-63X Series	Integrating Sound Level Meter	1488295
2	Casella	CEL-63X Series	Integrating Sound Level Meter	4181587
4	Casella	CEL-120/1	Calibrator	4358251
5	Casella	CEL-120/1	Calibrator	5230736
6	Benetech	GM816	Wind Speed Anemometer	N/A

Table 3.1 Noise Monitoring Equipment

3.3 Monitoring Parameters and Frequency

Table 3.2 presents the noise monitoring parameters and frequencies.

Table 3.2 Monitoring Parameters and Frequencies of Noise Monitoring

Parameter	Frequency and Period
LAeq (30min)	At each station at 0700-1900 hours on normal weekdays at a frequency
L10 and L90 will be recorded for reference	of once a week

The copyright of this document is owned by MateriaLab Consultants Ltd. It may not be reproduced except with prior written approval from the Company.

3.4 Monitoring Methodology

- 3.4.1 The monitoring procedures are as follows:
 - The monitoring station is set at a point 1m from the exterior of the sensitive receivers building façade and set at a position 1.2m above the ground.
 - The battery condition is checked to ensure good functioning of the meter.
 - Parameters such as frequency weighting, the time weighting and the measurement time are set as follows:
 - frequency weighting : A
 - time weighting : Fast
 - measurement time : Weekly 30 minutes between 0700-1900 on normal weekdays
 - Prior to and after noise measurement, the meter shall be calibrated using the calibrator for 94.0 dB at 1000 Hz. If the difference in the calibration level before and after measurement is more than 1.0 dB, the measurement will be considered invalid and repeat of noise measurement is required after re-calibration or repair of the equipment.
 - Noise monitoring should be cancelled in the presence of fog, rain, and wind with a steady speed exceeding 5 m/s, or wind with gusts exceeding 10 m/s.
 - Noise measurement should be paused during periods of high intrusive noise if possible and observation shall be recorded when intrusive noise is not avoided.
 - At the end of the monitoring period, the Leq, L10 and L90 are recorded. In addition, site conditions and noise sources are recorded on a standard record sheet.

3.5 Maintenance / Calibration

- 3.5.1 Maintenance and Calibration procedures are as follows:
 - The microphone head of the sound level meter and calibrator should be cleaned with a soft cloth at quarterly intervals.
 - The sound level meter and calibrator should be calibrated annually by a HOKLAS laboratory.
 - Relevant calibration certificates are provided in **Appendix D**.

3.6 Monitoring Locations

- 3.6.1 According to the EM&A Manual, three noise monitoring locations, namely KTD1, KTD2 and KER1, are covered by this Contract within the South Apron Area of Former Kai Tak Airport. The other two noise monitoring locations, which are identified in Cha Kwo Ling area, are farther than 300m away from the site boundary and thus not covered by this Contract. The monitoring works in Cha Kwo Ling area are covered by other Contract(s) respectively.
- 3.6.2 According to the approved alternative baseline air quality and noise monitoring locations (EPD reference: EP2/K19/A/21 Pt.5), the original monitoring locations (KTD1, KTD2 and KER1) are proposed to be replaced by alternative monitoring locations (KTD1a, KTD2a and KER1a) for noise monitoring.
- 3.6.3 According to the approved relocation of monitoring location KER1a (EPD reference: () in EP2/K19/A/21 Pt.5), the monitoring location KER1a are proposed to be relocated by alternative monitoring location KER1b for noise monitoring.

- 3.6.4 According to the approved relocation of monitoring location KTD2a (EPD reference: () in EP2/K19/A/21 Pt.6), the monitoring location KTD2a are proposed to be relocated by alternative monitoring location KTD2b for noise monitoring.
- 3.6.5 According to the approved relocation of monitoring location KTD2b (EPD reference: () in EP2/K19/A/21 pt.7), the monitoring location KTD2b are proposed to be relocated by alternative monitoring location KTD2c for noise monitoring.
- 3.6.6 The most updated locations are summarized in **Table 3.3** and shown in **Figure 2**.

 Table 3.3
 Location of Noise Monitoring Station

Monitoring Station	Location
KTD1a	Centre of Excellence in Paediatrics (Children's Hospital)
KTD2c	G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)
KER1b	Site Boundary at Cheung Yip Street

3.7 Results and Observations

- 3.7.1 The schedule of noise monitoring in reporting month is provided in **Appendix E**.
- 3.7.2 During the reporting month, at KTD1a, road traffic along Shing Fung Road and Shing Cheong Road were observed in the surroundings. At KTD2c, road traffic along the Kwun Tong By-pass and non-project related construction activities at the nearby construction site was observed. At KER1b, project related construction activities, road traffic along Cheung Yip Street and non-project related construction activities at the nearby construction site was observed. Major noise sources including noise emission from plant & PME and some other construction activities, travel of vehicles, loading and unloading of C&D waste were observed in the site. The above factors may affect the monitoring results.
- 3.7.3 No raining and wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation. The weather conditions during the monitoring month are provided in **Appendix K**.
- 3.7.4 The noise monitoring data are summarized in **Table 3.4**. Detailed monitoring data are presented in **Appendix G**.

			<u> </u>		
Time Denied		Leq _(30min) dB(A) (Range)	Action Level	Limit Level	
Time Period	Noise				
	KTD1a	KTD2c	KER1b		
0700-1900 hrs on normal weekdays	67-70	74-75	71-75	When one documented complaint is received	75 dB(A)

Table 3.4 Summary of Noise Impact Monitoring Res	ults
--	------

Note:

KTD1a: Façade Measurement

KTD2c & KER1b: Free-field measurement (+3dB(A) correction has been applied)

- 3.7.5 No Action / Limit Level exceedance of location KTD1a, KTD2c and KER1b was recorded for construction noise in the reporting month.
- 3.7.6 The Action and Limit Levels for noise impact monitoring have been set and are presented in **Appendix C**.
- 3.7.7 The Event and Action Plan for noise is given in **Appendix H**.

3.8 Comparison of Noise Monitoring Results with EIA Predictions

3.8.1 The noise monitoring data was compared with the EIA predictions as summarized in **Table 3.5**.

 Table 3.5
 Comparison of Noise Monitoring data with EIA predictions

Monitoring Station	Receiver Reference	Maximum Predicted Mitigated Construction Noise Level, dB(A)	Maximum Leq _(30min) dB(A) In June 2020
KTD1a	KTD1	74	70
KTD2c	-	-	75
KER1b	KER1	75	75
NI. (.			

Note:

Maximum Predicted Mitigated Construction Noise Level extracted from Table 5.13 of EIA Report, AEIAR-174/2013.

3.8.2 The impact noise monitoring results of location KTD1a and KER1b in the reporting month did not exceed the Maximum Predicted Mitigated Construction Noise Level in the approved Environmental Impact Assessment (EIA) Report and no Action / Limit Level exceedance was recorded in the reporting period.

4. LANDSCAPE AND VISUAL

4.1 Audit Requirements

- 4.1.1 As per the Trunk Road T2 EM&A Manual, the landscape and visual mitigation measures during the construction phase shall be audited by a Registered Landscape Architect, as a member of the Environmental Team, at least once every two weeks to ensure compliance with the intended aims of the measures.
- 4.1.2 According to the Kai Tak Development EM&A Manual, measures to mitigate landscape and visual impacts during construction should be checked to ensure compliance with the intended aims of the measures. The progress of the engineering works shall be regularly reviewed onsite to identify the earliest practical opportunities for the landscape works to be undertaken. The ET shall report on the Contractor's compliance on a weekly basis.

4.2 Results and Observations

- 4.2.1 To monitor and audit the implementation of landscape and visual mitigation measures, five weekly landscape and visual site audits were carried out on 3, 10, 17, 24 and 30 June 2020 and two of them 10 and 24 June 2020 were carried out by a Registered Landscape Architect. The weekly landscape and visual impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 4.2.2 Should non-compliance of the landscape and visual impact occur, action in accordance to the event action plan presented in **Appendix H** shall be carried out.

5. WASTE MANAGEMENT

5.1 Audit Requirements

- 5.1.1 The effective management of waste arising during the construction phase will be monitored through the site audit programme. Regular audits and site inspections should be carried out to ensure that the recommended good site practices and other mitigation measures are implemented by the Contractor.
- 5.1.2 The audit should look at all aspects of on-site waste management practices including the waste generation, storage, recycling, transport and disposal. The aims of waste audit are:
 - to ensure the waste arising from the works are handled, stored, collected, transferred and disposed of in an environmentally acceptable manner;
 - verify the implementation status and evaluate the effectiveness of the mitigation measures; and
 - to encourage the reuse and recycling of material.

5.2 Results and Observations

- 5.2.1 C&D materials and wastes sorting were carried out on site. Receptacles were available for C&D wastes and general refuse collection.
- 5.2.2 The amount of wastes generated by the site activities in the reporting month is shown in **Appendix I**.

6. SITE INSPECTION

6.1 Site Inspection

- 6.1.1 Site inspections were carried out weekly to monitor the implementation of proper environmental pollution control and mitigation measures for the Project. A summary of the mitigation measures implementation schedule is provided in **Appendix J**.
- 6.1.2 In the reporting month, five site inspections were carried out 3, 10, 17, 24 and 30 June 2020. Two of them, held on 3 and 17 June 2020 was the joint inspections with the IEC, ER, the Contractor and the ET.
- 6.1.3 No outstanding issues were reported during the reporting month. Details of observations recorded during the site inspections are summarized in **Appendix M**.
- 6.1.4 All the follow-up actions requested by Contractor's ET and IEC during the site inspections were undertaken as reported by the Contractor and confirmed in the following weekly site inspection conducted during the reporting month.

7. ENVIRONMENTAL COMPLAINT AND NON-COMPLIANCE

7.1 Environmental Exceedance

7.1.1 No Action / Limit Level exceedance was recorded for 24-hr TSP and construction noise at KTD1a, KTD2c and KER1b in the reporting month.

7.2 Complaints, Notification of Summons and Prosecution

- 7.2.1 No environmental complaint, notification of summons and successful prosecution were received in the reporting month.
- 7.2.2 Cumulative complaint log, summaries of complaints, notification of summons and successful prosecutions are presented in **Appendix L.**

8. IMPLEMENTATION STATUS OF ENVIRONMENTAL MITIGATION MEASURES

8.1 Implementation Status

8.1.1 The Contractor has implemented environmental mitigation measures and requirements as stated in the EIA Reports, the EP and the EM&A Manuals. The implementation status of the mitigation measures during the reporting month is summarized in **Appendix J**. Status of required submission under the EP during the reporting period is summarized in **Table 8.1**.

EP Condition	Submission	Submission Date
EP-337/2009		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.11	Landscape Mitigation Plan(s)	18/12/2015
Condition 3.3	Monthly EM&A Report (May 2020)	12/06/2020
EP-339/2009/A		
Condition 2.4	Management Organization of Main Construction Companies	18/12/2015
Condition 2.5	Design Drawing of the Project	18/12/2015
Condition 3.3	Monthly EM&A Report (May 2020)	12/06/2020
EP-451/2013		
Condition 2.3	Management Organization of Main Construction Companies	18/12/2015
Condition 2.4	Design Drawing of the Project	18/12/2015
Condition 2.5	Landscape Mitigation Plan(s)	18/12/2015
Condition 2.10	Supplementary Contamination Assessment Report	18/12/2015
Condition 3.3	Baseline Monitoring Report	12/02/2016
Condition 3.4	Monthly EM&A Report (May 2020)	12/06/2020

 Table 8.1
 Status of Required Submission under Environmental Permit

9. FUTURE KEY ISSUES

9.1 Construction Programme for the Next Two Months

- Laying Cable and Construction for Road Lighting
- Construction of Street Furniture
- Construction of District Cooling System
- Landscape works irrigation systems, tree and shrub planting
- · Testing and commissioning of irrigation system

9.2 Key Issues for the Coming Month

9.2.1 Potential environmental impacts arising from the above construction activities are mainly associated with construction dust, construction noise, water quality, waste management and landscape and visual impact.

9.3 Monitoring Schedules for the Next Three Months

9.3.1 The tentative schedules for environmental monitoring in the coming three months are provided in **Appendix E**.

10. CONCLUSIONS

- 10.1.1 24-hour TSP impact monitoring and construction noise monitoring were carried out in the reporting month, no Action / Limit Level exceedance was recorded during the period.
- 10.1.2 No complaint of air quality was received. Therefore, no impact 1-hour TSP monitoring was conducted in the reporting month.
- 10.1.3 Five environmental site inspections were carried out in the reporting month. Recommendations on mitigation measures for water quality impact and permit / licenses was given to the Contractor for remediating the deficiencies identified during the site inspections.
- 10.1.4 Five weekly Landscape and Visual Site audits were carried out 3, 10, 17, 24 and 30 June 2020 and two of them 10 and 24 June 2020 were carried out by a Registered Landscape Architect in the reporting month. The weekly Landscape and Visual Impact reports were counter-signed by IEC as according to the requirement of EM&A Manual (AEIAR-130/2009).
- 10.1.5 Referring to the Contractor's information, no environmental complaint, notification of summons and successful prosecution was received in the reporting month.

10.2 Comment and Recommendations

- 10.2.1 The recommended environmental mitigation measures, as proposed in the EIA reports and EM&A Manuals shall be effectively implemented to minimize the potential environmental impacts from the Project. The EM&A programme would effectively monitor the environmental impacts generated from the construction activities and ensure the proper implementation of mitigation measures.
- 10.2.2 According to the environmental audit performed in the reporting month, the following recommendations were made:

Air Quality Impact

• No specific observation was identified in the reporting month.

Construction Noise Impact

• No specific observation was identified in the reporting month.

Water Quality Impact

Manholes should be covered to prevent silt and construction materials.

Chemical and Waste Management

• No specific observation was identified in the reporting month.

Land Contamination

• No specific observation was identified in the reporting month.

Landscape and Visual Impact

• No specific observation was identified in the reporting month.

General Condition

• No specific observation was identified in the reporting month.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

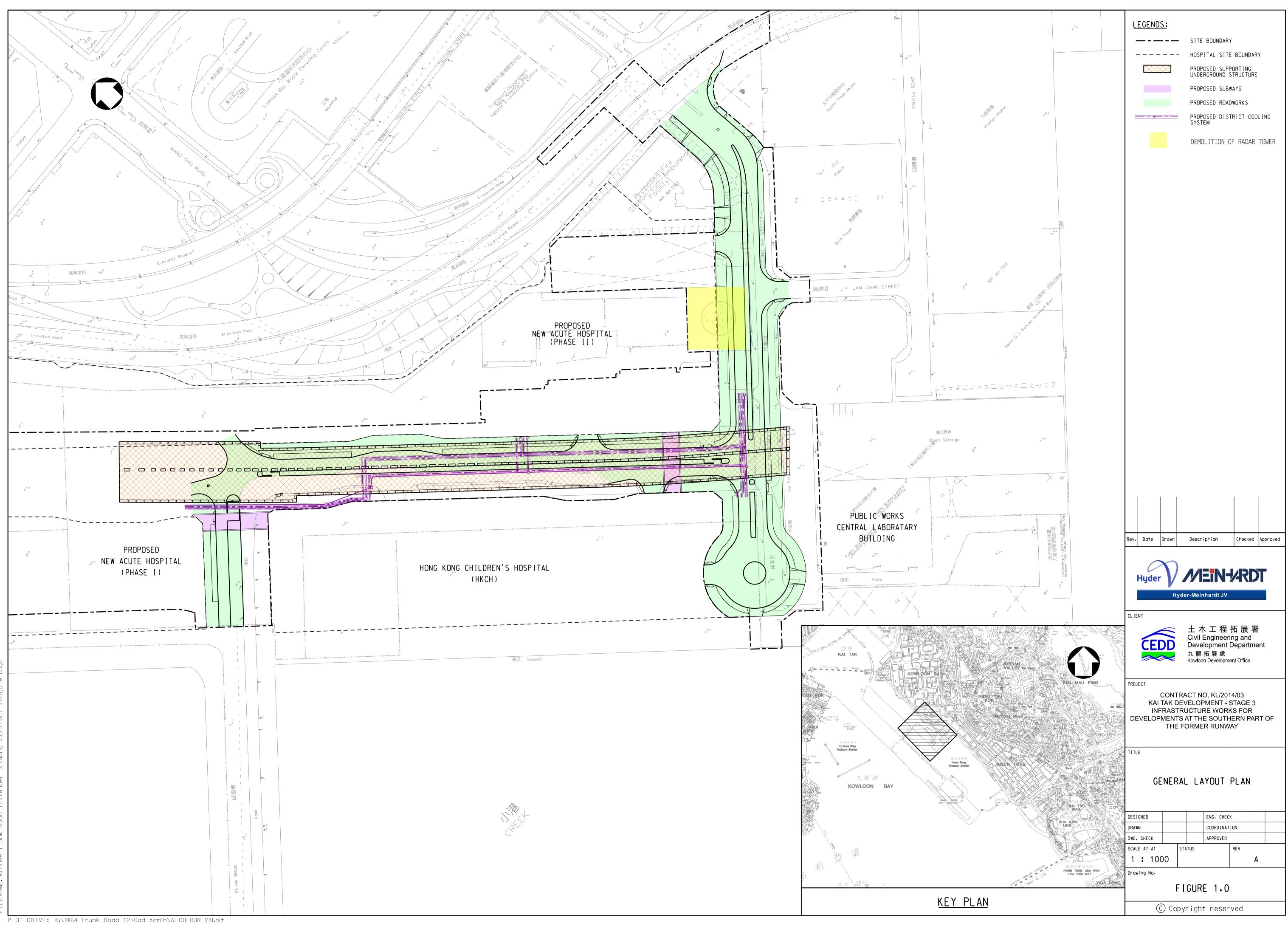
 Website
 : www.fugro.com

Permit / Licenses

The contractor was reminded the EP and CNP should be provided on the site.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032


 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

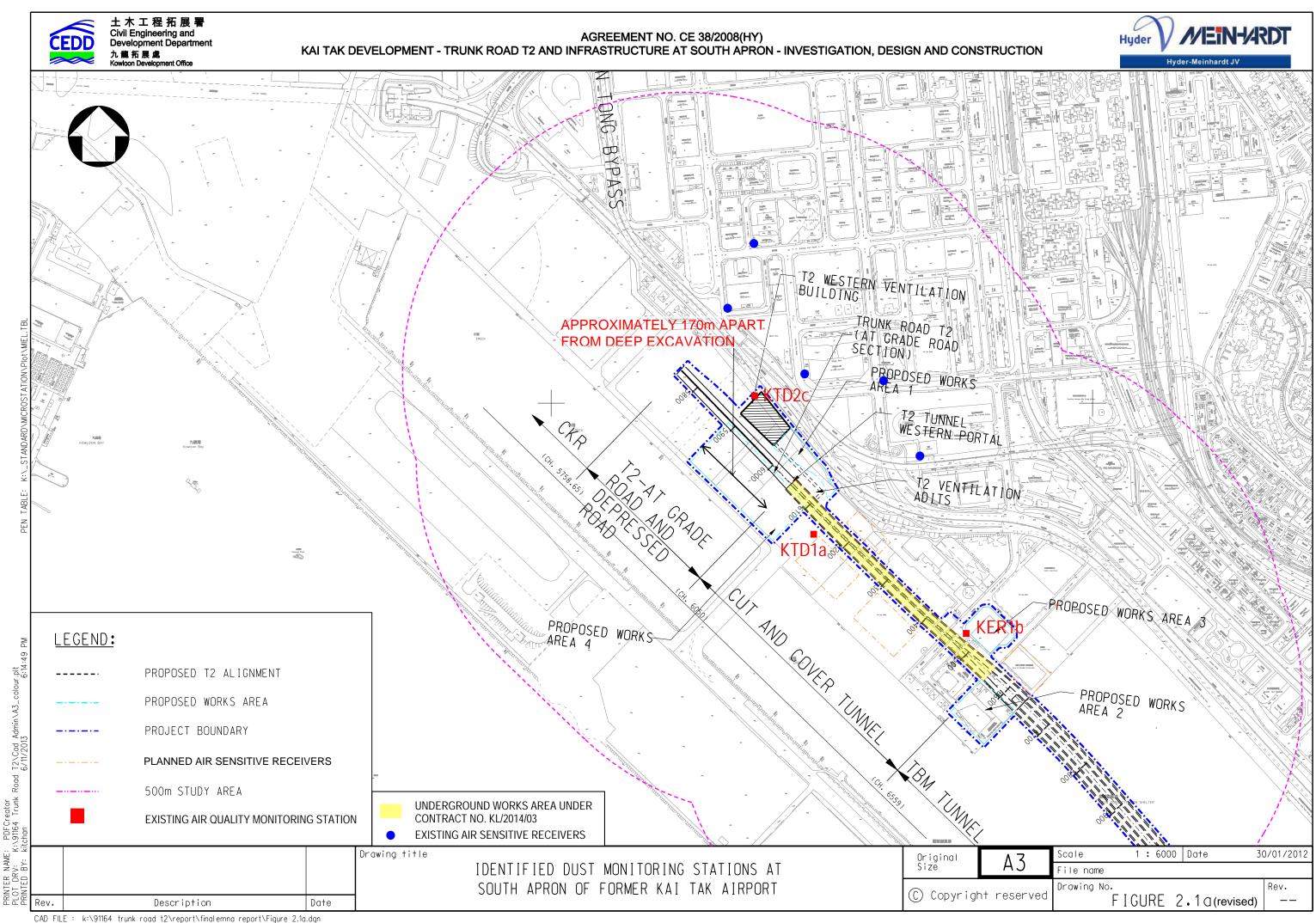
Figure 1

Project General Layout

NTED BY: kitchan 18/2/2015 13:00:43 .ENAME: K:\91164 Trunk Road T2\Tender Drawing (Contract 1)\

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032


 E-mail
 : mcl@fugro.com

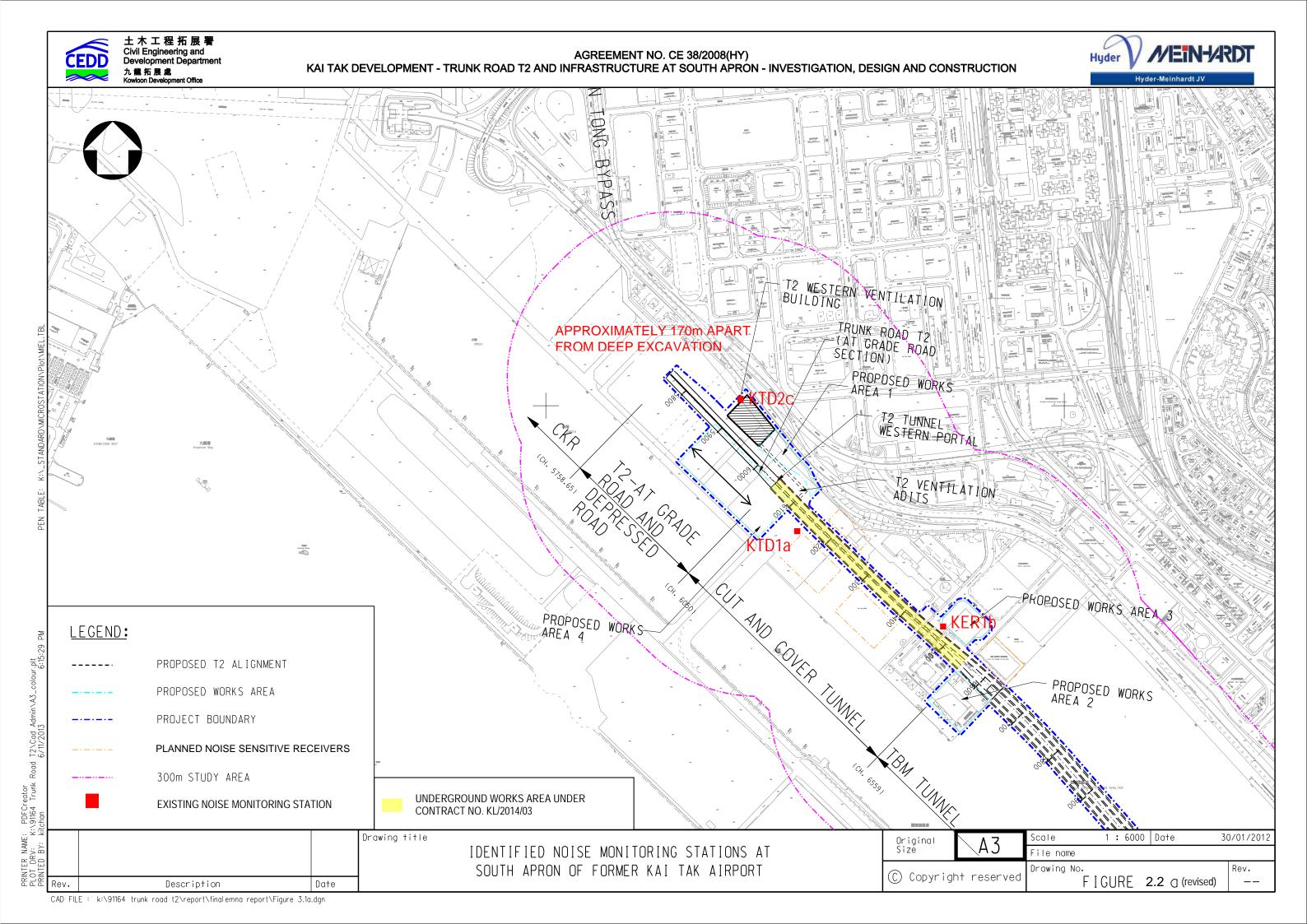

 Website
 : www.fugro.com

Figure 2

Air and Noise Monitoring Locations

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix A

Construction Programme

Hyder	MEINHARDT
Hyd	er - Meinhardt JV

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

Hyder - Meinh ivity ID	Activity Name	Rem	Start	Finish	ay		June 60			Jul 61
		Dur			17 24	31 07	14	21		2
	ge 3 Infrastructure Works for Developments at the Southern Par	t of the	Former Ru	nway						
Project Key Date	S									
Project Commen	cement and Completion									
K-PK-PCC-1200	Project Completion Date	0		04-Jul-20*					 Project Comp 	let
Project Complet	ion Date									
K-PK-PCD-1000	Section 1-Remainder of the Works (i.e. all Works except Works included in other Section of the Work)	0		31-May-20*		 Section 1-Rem 	ainder of the V	Works (i.e. al	l Works except Works	in
K-PK-PCD-1300	Section 3 - Construction of District Cooling System (DCS)	0		31-May-20*		Section 3 - Con	nstruction of E	District Coolir	ng System (DCS)	
K-PK-PCD-1600	Section 5 - Completion of All Landscape Softworks	0		31-May-20*		Section 5 - Co	mpletion of Al	l Landscape	Softworks	
K-PK-PCD-1700	Section 6 - Completion of all Establishment Works for all Landscape Softworks	0		09-Jul-20*					♦ Section	16
K-PK-PCD-1800	Section 7 - Preservation and Protection of Existing Trees	0		31-May-20*		Section 7 - Pre	servation and	Protection of	Existing Trees	
Site Handover D	ate									
K-PK-SHD-1000	Portion A	0		31-May-20*		 Portion A 				
K-PK-SHD-1400	Portion D	0		31-May-20*		• Portion D			-	
K-PK-SHD-1500	Portion E	0		31-May-20*		• Portion E			-	
K-PK-SHD-1600	Portion F	0		31-May-20*		• Portion F			-	
K-PK-SHD-1800	Portion I	0		21-Jun-20*			•	• Portion I	-	
K-PK-SHD-1900	Portion K	0		31-May-20*		• Portion K				
K-PK-SHD-2000	Portion M	0		31-May-20*		• Portion M				
K-PK-SHD-2200	Portion O	0		31-May-20*		• Portion O				
K-PK-SHD-2500	Portion R	0		31-May-20*		• Portion R				
K-PK-SHD-2600	Portion X	0		12-Jun-20*		-	♦ Portion X			
General Submiss	sion					-				
Interfacing Wor	ks									
K-PA-INT-5000	Joint inspection and handover for DCS Contract/ EMSD	4	22-Jun-20	26-Jun-20		-		Join	nt inspection and hand	0
K-PA-INT-6000	Joint inspection and handover for road works, street furniture and lighting to HyD	4	13-Jul-20	16-Jul-20					-	
K-PA-INT-6010	Joint inspection and handover for traffic signal system to TD/EMSD	4	07-Jul-20	10-Jul-20					Joint	in
Prelimiaries										
K-DR-PRE-1800	Submission of time-lapsed photographs and video	13	20-Feb-16 A	12-Jun-20			 Submission 	n of time-laps	sed photographs and v	vid
Section 1 of the V	Vorks-Remainder of the Works					-				
Roadwork and I	Drainage Works					-				
Road D4-3 (Chin	g Shung Road)					-				

中國路德工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION Milestone
 Critical Activity
 Non-Critical Activity
 Remaining Level of Effort
 Actual Work

3 MRP Jun 2020 - Aug 2020

Page 1 of 3

Project ID :54 3MRP Jun - Aug 20 Layout : KL201403 3MRP-1 Page 1 of 3

r Rur	nway		CEDD	土木工程 Civil Enginee Development 九龍拓展處 Kowloon Develop	Department
July				August	ber
61 2	19 26	02	09	62 16	63 23 30
etion D	ate				
include	d in other Se	ction of the	Work)		
6 - Coi	mpletion of a	ll Establishi	ment Work	s for all Lar	ndscape Softwork
	-				-
	r DCS Contra	at EMCD			
over for	r DCS Contra	CI EMSD			
Joint	t inspection a	nd handove	er for road	works, stre	et furniture and lig
inspecti	on and hand	over for trai	ffic signal	system to TI	D/EMSD
ideo					
iue0					
		3 Mont	hs Rolling	Programme	
	Date		ision	Checked	Approved
	31-May-20	Jun 20 - A			
		1	5		
	1				

KL/2014/03 Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former

ty ID	Activity Name	Rem Start Finish			ay		June 60						Jul
		Dur			9 17	24	31	07	60	21	28	05	61 12
Zone 1 & 2 and Shi	ing Fung Road R & D Works (Stage 3) CH410-CH340				-	I		_		- II			_
SCR2835	Carry out and complete remaining works	5	24-Apr-20 A	05-Jun-20				Carry ou	t and comp	lete remain	ing works	s	
Zone 3 R & D Work	ks (Stage 2) CH270 to 190												
SCR1860	Carry out and complete remaining works	3	28-Feb-20 A	03-Jun-20			— C	Carry out a	nd complet	e remaining	works		
Zone 4 R & D Work	ks												
SCR2167	Construction of U-channel and footpath at westbound	5	16-Mar-20 A	05-Jun-20				Construc	ction of U-o	channel and	footpath	at westbo	ound
SCR2172	Carry out and complete remaining works	6	06-Jun-20	12-Jun-20					Carry out	and comple	ete remain	ning work	ks
Road D4-4 (Cheu	mg Yip Street)												
CH100 to CH150 C	Cheung Yip Street Cul de Sac												
Cheung Yip Street	Cul de Sac												
SCR2680	Construction of Footpath	10	10-Apr-20 A	29-Jun-20			•				Const	ruction of	of Footpat
SCR2685	Laying Cable and Construction for Road Lighting	18	13-Jun-20	06-Jul-20								Layir	ng Cable
SCR2690	Construction of Street Furniture	28	08-Jun-20	11-Jul-20									Constr
Remaining Storm	Drainage												
SCR2865	Construction of Storm drainage SMH4048717-M501a-M501	14	29-Apr-20 A	16-Jun-20					Con	struction of	Storm di	rainage S	MH4048
SCR2895	Construction of remaining Storm drainage M501-SMH4048721	8	02-Mar-20 A	09-Jun-20				Co	nstruction	of remaining	g Storm d	lrainage N	M501-SN
SCR2905	Remaining works above Storm drainage SMH4048717-M501a-M501-SMH4048721	30	17-Jun-20	23-Jul-20									
CH220 - CH420 No	orthbound												
Road Works and M	liscellaneous Works												
K-01-RWS-9442	Laying Cable and Footing Construction for Road Lighting	25	01-Jun-20	30-Jun-20							📕 Layi	ng Cable	e and Foo
CH220 - CH420 So	outhbound												
Miscellaneous Wor	rks												
K-01-RWS-9635	Construction of Footpath at southbound	10	27-Mar-20 A	11-Jun-20					Constructi	on of Footpa	ith at sou	thbound	
K-01-RWS-9636	Construction of Street Furniture	20	01-Jun-20	23-Jun-20						Cons	truction o	of Street F	Furniture
ection 3 of the W	Vorks- Construction of District Cooling System (Subject to Excision)												
Construction of I	District Cooling System												
Construction of I	DCS Works at Zone 4						 						
SCR2350	Submission of testing records, as-built drawings	5	19-Feb-20 A	05-Jun-20			-	Submissi	ion of testi	ng records, a	as-built d	rawings	
SCR2370	DCS pipe connection	10	06-Jun-20	17-Jun-20					— D	CS pipe con	nection		
	Joint inspection and handover for connection to DCS Contract/EMSD	7	18-Jun-20	26-Jun-20	+		•			T	aint in an	ection and	dhandar

٠ 中國路德工程有限責任公司 CHINA ROAD AND BRIDGE CORPORATION

 Milestone Critical Activity Non-Critical Activity Remaining Level of Effort Actual Work

3 MRP Jun 2020 - Aug 2020 Page 2 of 3

Project ID :54 3MRP Jun - Aug 20 Layout : KL201403 3MRP-1 Page 2 of 3

r Rur	way		CEDI	九龍 Kowloon	5 展 處 Developme	拓展署 ring and Department nent Office				
July 61				August 62			ber 63			
2	19 26	<u> </u>	2 09		16	23	30			
I	•									
oath										
le and (Construction	for Road	Lighting							
structio	n of Street Fi	irniture								
suucuo	II OI SUCCI I	innuic								
48717-1	M501a-M501									
SMH404	49701									
SMH404	48/21									
	Remair	ning work	s above Sto	orm drai	nage S	MH4048	8717-M			
		•								
ooting C	Construction	for Road 1	Lighting							
ooting C	Construction	for Road 1	Lighting							
ooting C	Construction	for Road 1	Lighting							
ooting (Construction	for Road 1	Lighting							
ooting C	Construction	for Road 1	Lighting							
ooting C	Construction	for Road 1	Lighting							
ooting (Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
	Construction	for Road 1	Lighting							
ooting C	Construction	for Road 1	Lighting							
re										
re	Construction									
re										
re										
re										
re										
re		to DCS C	ontract/EM	SD						
re		to DCS Co		SD		Appro	pyred			
re	r connection	to DCS Co	ontract/EM	SD		Appro				
re	connection	to DCS Co 3 Mo	ontract/EM	SD		Appro				
re	connection	to DCS Co 3 Mo	ontract/EM	SD		Appro				

tivity ID	Activity Name		Rem Dur	Start	Finish	ay 9				June 60				JI F
			Dui			17	24	31	07	14	21	28	05	12
Tree Planting														
K-05-TPG-1150	Tree Planting		15	24-Mar-20 A	14-Jun-20					Tree I	Planting			
Shrub Plantin	g													
K-05-SPG-1200	Shrub Planting		15	24-Mar-20 A	14-Jun-20					Shrub	Planting			
Irrigation Syst	tem													
K-05-ISM-1280	Application of Temp	orary Water Supply with WSD	8	21-Mar-20 A	07-Jun-20				Appli	ication of 7	Femporary	Water Sup	ply with W	VSD
K-05-ISM-1290	Insatllation of Water	Meters	5	08-Jun-20	12-Jun-20					Insatllati	on of Wate	r Meters		
K-05-ISM-1300	Testing and commis	sioning of irrgation system	30	13-Jun-20	12-Jul-20									Tes
Section 7 of the	e Works-Preservation	and Protection of Existing Trees												
K-07-001-1000	Section 7 of the Wor	ks-Preservation and Protection of Existing Trees	12	04-Jan-16 A	11-Jun-20					Section 7	of the Wor	ks-Preserv	ation and	Protect

Project ID :54 3MRP Jun - Aug 20 Layout : KL201403 3MRP-1 Page 3 of 3

	unway			EDD	土木工程 Civil Engineer Development 九龍拓展處 Kowloon Developm	ing and Department	
July				A	ugust		ber
61					62		63
2	19	26	02	09	16	23	30
sting and commissioning of irrgation system							
tion	f Evicting	Trace					
tion of Existing Trees							

	3 Months Rolling Programme						
Date	Revision	Checked	Approved				
31-May-20	Jun 20 - Aug 20						

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

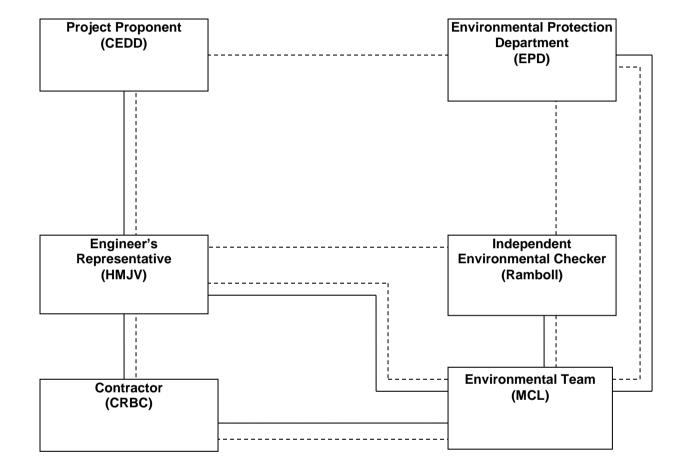
 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix B

Project Organization Chart


Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Legend:				
	Line of Reporting			
	Line of Communication			

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix C

Action and Limit Levels for Air Quality and Noise

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Action and Limit Levels for 24-hr TSP and 1-hr TSP

Parameter	Monitoring Station	Action Level (µg/m³)	Limit Level (µg/ m³)
	KTD1a	177	
24-hr TSP - (µg/m³) -	KTD2c	157	260
(µg/m²)	KER1b	172	
*1 br TOD	KTD1a	285	
*1-hr TSP (μg/m ³)	KTD2c	279	500
(µg/m²)	KER1b	295	

Note:

1-hr TSP monitoring should be required in case of complaints.

Action and Limit Levels for Construction Noise, Leq (30min), dB(A)

Time Period	Time Period Location		Limit	
0700-1900 hrs on normal weekdays	KTD1a KTD2c KER1b	When one documented complaint is received	75 dB(A)	

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix D

Calibration Certificates of Monitoring Equipment

RECALIBRATION DUE DATE:

October 21, 2020

Certificate of Calibration

			Calibration	Certificati	on Informat	tion		
Cal. Date:	October 22	l, 2019	Roots	meter S/N:	438320	Ta:	295	°K
Operator:	Jim Tisch					Pa: 744.2		mm Hg
Calibration	Model #:	TE-5025A	Calil	brator S/N:	2456			
		Vol. Init	Vol. Final	ΔVol.	ΔTime	ΔΡ	ΔΗ	1
	Run	(m3)	(m3)	(m3)	(min)	(mm Hg)	(in H2O)	
	1	1	2	1		3.2	2.00	
	2	3	4	1	1.0180	6.3	4.00	1
	3	5	6	1	0.9030	7.9	5.00	1
	4	7	8	1	0.8620	8.8	5.50]
	5	9	10	1	0.7120	12.6	8.00]
			C	Data Tabula	ition]
			(/ Pa	V Tetd \				
	Vstd	Qstd	√∆H(<u>Patd</u>)(<u>Tstd</u>)		Qa	√∆H(Ta/Pa)	
	(m3)	(x-axis)	(y-ax	is)	Va	(x-axis)	(y-axis)	
	0.9849	0.6936	1.4066		0.9957	0.7012	0.8904	
	0.9808	0.9635	1.9892		0.9915	0.9740	1.2592	1
	0.9787	1.0838	2.2240		0.9894	1.0957	1.4078	1
	0.9775	1.1340	2.3325		0.9882	1.1464	1.4765	1
	0.9724	1.3658	2.813		0.9831	1.3807	1.7808]
		m=	2.087			m=	1.30746	
	QSTD	b=	-0.035		QA	b=	-0.02244	
		r=	0.999	89		r=	0.99989	
		A) / 1//D A D)	1	Calculatio				
			/Pstd)(Tstd/Ta	a)	Va=			
	Qsta=	Vstd/∆Time				Va/∆Time		
			For subsequ	ent flow ra	te calculation	ns:		
	Qstd=	1/m ((√∆H(·	Pa <u>Tstd</u> Pstd Ta))-b)	Qa=	1/m ((√∆⊦	l(Ta/Pa))-b)	
	Standard	Conditions						
Tstd:						RECA	IBRATION	
Pstd:		mm Hg				mmonde	nual rocalibratio	n nor 1000
H. calibrat		ey er reading (ir					nual recalibrations	
	Contraction of the local division of the loc	eter reading (if					Regulations Part S Reference Meth	
		perature (°K)			2000 - 00- 0 000000000000000000000000000	a and a sub-state and a sub-		
and the second state of th		essure (mm l	Hg)		Determination of Suspended Particulate Matter in the Atmosphere, 9.2.17, page 30			
: intercept					LITE	e Aunosphe	re, 9.2.17, page :	50
n: slope								

Tisch Environmental, Inc. 145 South Miami Avenue Village of Cleves, OH 45002

<u>www.tisch-env.com</u> TOLL FREE: (877)263-7610 FAX: (513)467-9009

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

TSP SAMPLER CALIBRATION CALCULATION SPREADSHEET

Project : Env	vironmantal N					ION SPREAL		Calibration: 15	-May-20
Location : K	ER1b						Next Calib	ration Date: 14	-Aug-20
Brand:		Tisch						Technician: To	ony Wan
Model:		TE-5170		S/N:	3477				
				COND	ITIONS				
	Se	ea Level Pres	sure (hPa):	1008.3		ected Pressu	re (mm Hg):	756	
Temperature (°C): 28.5						perature (K):	302		
		N 4 - 1			ON ORIFICE			0.00700	
		Make:		Tisch	0	Qstd Slope:		2.08799	
	Oalih	Model:		TE-5025A	Q	std Intercept:		-0.03545	
		ration Date: S/N:		21-Oct-19 2456		Expiry Date:		21-Oct-20	
	,	0/IN.			RATION				
	H2O (L)	H2O (R)	H2O	Qstd	Ι	IC		LINEAR	
Plate No.	(in)	(in)	(in)	(m ³ /min)	(chart)	(corrected)	F	REGRESSION	
18	6.00	-7.20	13.200	1.743	50.00	49.59	Slope =	39.9042	
13	4.50	-6.50	11.000	1.592	46.00	45.62	Intercept =	-19.4311	
10	3.00	-5.40	8.400	1.394	36.00	35.70	Corr. coeff.=	0.9934	
7	2.50	-4.20	6.700	1.246	29.00	28.76			
5	1.50	-3.30	4.800	1.058	24.00	23.80			
			- \ \ L]						
-	Sqrt(H2O(Pa		а))-рј		FLOW RATE CHART				
	Pa/Pstd)(Tstd, dard flow rate				60.00				
	ed chart resp								
	art response				50.00				
	tor Qstd slope							1	
	or Qstd interc				<u></u> 40.00				
	temperature	-	ation (deg K)		() () () () () () () () () ()				
	, pressure duri	-							
Tstd = 298 c		-			а Ч Ч			·	
Pstd = 760 r	nm Hg				Actual Chart Re 00.05 00.01 00.01				_
For subseq	uent calcula	tion of samp	oler flow:		al (
1/m((I)[Sqrt(298/Tav)(Pav	v/760)]-b)			10.00 H				
m = sample	•								
b = sample	•				0.00).000 0.50	00 1.000	1.500	2.000
I = chart re	•					0.00 0.00	.000	1.000	2.000
-	average temp					Stand	dard Flow Rate	(m³/min)	
Pav = daily a	average pres	sure							

(ory

Report Date: 19/5/2020

Wan Ka Ho Project Consultant

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

-		Ionitoring Wo	rks For Cor	ntract No. KL	N/20 ⁻	15/07		Date of	Calibration:	9-Apr-20
ocation : K								Next Calib	ration Date:	8-Jul-20
Brand:		Tisch							Technician:	Mike Ka
Model:	-	TE-5170		S/N:	4037					
				COND		IS				
	Se	ea Level Press	sure (hPa).	1017.5			cted Pressu	re (mm Hg):	763	
			rature (°C):	21.6				perature (K):	295	
				CALIBRATI	ON C	RIFICE				
Make: Tisch							Qstd Slope:		2.08799	
		Model:		TE-5025A		Qs	td Intercept:		-0.03545	
		ration Date:		21-Oct-19		I	Expiry Date:		21-Oct-20	
		S/N:		2456						
				CALIB	RATIO					
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		I	IC		LINEAR	
	(in)	(in)	(in)	(m ³ /min)	(C	hart)	(corrected)		REGRESSIC	N
18	10.80	-3.10	13.900	1.817		56.00	56.44	Slope =	26.0899	
13	9.20	-1.80	11.000	1.618		50.00	50.39	Intercept =	8.3490	
10	8.40	-0.60	9.000	1.465		45.00	45.35	Corr. coeff.=	0.9964	
7	6.60	1.40	5.200	1.118		38.00	38.30			
5	5.20	1.70	3.500	0.920		32.00	32.25			
Calculation			\\ 							
_	• • •	/Pstd)(Tstd/Ta	a))-D]				FLC	OW RATE CI	HART	
	a/Pstd)(Tstd/ lard flow rate					60.00				
	ed chart resp									>
	art response					50.00				
	or Qstd slope									
	or Qstd interc				Chart Response (IC)	40.00				
		during calibra	tion (dea K)		nse					
	•	ing calibration			sbo	30.00		•		
Fstd = 298 d		g	(Re					
Pstd = 760 n	•				hari	20.00				
	0	tion of samp	ler flow:		alC					
1/m((I)[Sqrt(298/Tav)(Pav/760)]-b)				Actual (10.00					
m = sampler slope										
o = sample	•					0.00			1.500	
= chart res	•					0.	.000 0.50	00 1.000	1.500	2.000
⊺av = daily a	verage temp	erature					Stan	dard Flow Rate	(m ³ /min)	
Pav = dailv a	average press	sure					Clanc		(

- Cory

Wan Ka Ho Project Consultant

Report Date: 14/4/2020

MATERIALAB CONSULTANTS LIMITED Room 723 & 725, 7/F, Block B, Tel :+852 2450 8238

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

-		Ionitoring Wo	rks For Cor	ntract No. KL	N/201	15/07			Calibration:	
_ocation : KT									ration Date:	
Brand:		Tisch							Technician:	Mike Ka
Model:	-	TE-5170		S/N:	3838					
				COND		IS				
	Se	a Level Press	ure (hPa):	1017.5			cted Pressu	re (mm Hg):	763	
			ature (°C):	21.6		00110		perature (K):	295	
		. emper								
				CALIBRATI	ON O	RIFICE				
Make: Tisch							Qstd Slope:		2.08799	
		Model:		TE-5025A		Qs	td Intercept:		-0.03545	
		ration Date:		21-Oct-19		I	Expiry Date:		21-Oct-20	
	5	S/N:		2456						
r				CALIB	RATIO	ON		•		
Plate No.	H2O (L)	H2O (R)	H2O	Qstd		I	IC		LINEAR	
	(in)	(in)	(in)	(m³/min)		hart)	(corrected)		REGRESSIC	N
18	8.30	-5.20	13.500	1.791		59.00	59.46	Slope =	25.0637	
13	6.80	-3.10	9.900	1.536		52.00	52.41	Intercept =	13.9296	
10	5.90	-2.20	8.100	1.391		47.00	47.37	Corr. coeff.=	0.9960	
7	4.30	-0.40	4.700	1.063		41.00	41.32			
5	3.40	0.70	2.700	0.810		34.00	34.27			
Calculations										
_	• • •	/Pstd)(Tstd/Ta	ı))-b]				FLO	OW RATE C	HART	
C = I[Sqrt(Pa	, ,					70.00				
Qstd = standa						70.00				
C = correcte	-	onse				60.00				
= actual cha	-									
m = calibrato	-				<u>0</u>	50.00				
o = calibrato		•			onse (IC)	40.00				
	•	during calibrat			lod	40.00				
-		ng calibration	(mm Hg)		Res	30.00		•		
Tstd = 298 de	•				art					
Pstd = 760 m	•	(Actual Chart Resp	20.00				
-		tion of samp	ler flow:		stua					
I/m((I)[Sqrt(2	, (///bU)]-D)			Ac	10.00				
n = sample	•					0.00				
sampler	-						.000 0.50	00 1.000	1.500	2.000
= chart res	•	(-		
「av = daily av Pav = daily av	• ·						Stand	dard Flow Rate	(m³/min)	

- Toky

Wan Ka Ho Project Consultant

Report Date: 14/4/2020

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1 of 1

Report no.: 183057CA196305

CALIBRATION CERTIFICATE OF SOUND LEVEL METER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Address : Room 723 & 725, 7/F., Block B Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Chung, N.T. Project : Calibration Services

Details of Unit Under Test. UUT

Description Manufacturer	:	Sound Level Meter Casella		
		Meter	Microphone	Preamplifier
Model No.	:	CEL-63X	CE-251	CEL-495
Serial No.	:	1488295	02809	003921
Next Calibration Date	÷	16-Oct-2020		

Specification Limit : EN 61672: 2003 Type 1

Laboratory Information

Details of Reference Equipment -

Description:B & K Acoustic Multifunction Calibrator 4226 (Traditional free field setting)Equipment ID.:R-108-1Date of Calibration :17-Oct-2019Ambient Temperature : 22

Calibration Location : Calibration Laboratory of FTS

Method Used : By direct comparison

Calibration Results :

Paramet		Mean Value (dB)	Specification Limit(dB)			
	4000Hz	1.4	2.6	to	-0.6	
	2000Hz	1.3	2.8	to	-0.4	
	1000Hz	0.0	1.1	to	-1.1	
A-weighting	500Hz	-3.4	-1.8	to	-4.6	
frequency response	250Hz	-8.7	-7.2	to	-10.0	
response	125Hz	-16.2	-14.6	to	-17.6	
	63Hz	-26.2	-24.7	to	-27.7	
	31.5Hz	-39.1	-37.4	to	-41.4	
Differential level	94dB-104dB	0.0	± 0.6			
linearity	104dB-114dB	0.0		± 0.6	3	

Remarks:

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. For calibration: Reference SPL are 94, 104 & 114dB, range setting is 20-140dB & time weighting is fast
- 4. The equipment does comply with EN 61672: 2003 Type 1 sound level meter for the above measurement.
- 5 The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by :	Alliam	Date :	23-10-2019				26-10-20	19
CA-R-297 (22/07/2009	9)			Leu	ng Kwok Tai (Assi	stant Man	ager)	
ananan sina malanda da 🤉 🥵 🖬 kata kata sasa di			** E	nd of Report **				

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0905 03-01			Page	1	of	2
Item tested							
Description:	Sound Level Meter	(Type 1)	,	Microphone			
Manufacturer:	CASELLA		,	-			
Type/Model No.:	CEL-63X		10	CEL-251			
Serial/Equipment No.:	4181587		,	02781			
Adaptors used:			,				
Item submitted by							
Customer Name:	Furgo Technical Se	ervices Limited					
Address of Customer:	-						
Request No.:	-						
Date of receipt:	05-Sep-2019						
Date of test:	09-Sep-2019						
Reference equipment		ation					
Description:	Model:	Serial No.		Expiry Date:		Traceat	ole to:
Multi function sound calibrator	B&K 4226	2288444		23-Aug-2020		CIGISME	EC
Signal generator	DS 360	61227		26-Dec-2019		CEPREI	
Ambient conditions							
Temperature:	21 ± 1 °C						
Temperature: Relative humidity:	21 ± 1 °C 55 ± 10 %						

Test specifications

- 1, The Sound Level Meter has been calibrated in accordance with the requirements as specified in BS 7580: Part 1: 1997 and the lab calibration procedure SMTP004-CA-152.
- 2. The electrical tests were performed using an electrical signal substituted for the microphone which was removed and replaced by an equivalent capacitance within a tolerance of ±20%.
- 3. The acoustic calibration was performed using an B&K 4226 sound calibrator and corrections was applied for the difference between the free-field and pressure responsess of the Sound Level Meter.

Test results

This is to certify that the Sound Level Meter conforms to BS 7580: Part 1: 1997 for the conditions under which the test was performed.


Details of the performed measurements are presented on page 2 of this certificate.

Actual Measurement data are documented on worksheets

Approved Signatory:

Jung Fend

10-Sep-2019 Company Chop:

Comments: The results reported in this certificate refer to the condition of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

Date:

© Soils & Materials Engineering Co., Ltd.

Form No CARP152-1/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No.:

19CA0905 03-01

Website: www.cigismec.com

Page

of

2

2

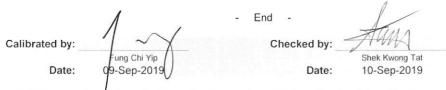
1, Electrical Tests

E-mail: smec@cigismec.com

The electrical tests were performed using an equivalent capacitance substituted for the microphone. The results are given in below with test status and the estimated uncertainties. The "Pass" means the result of the test is inside the tolerances stated in the test specifications. The "-" means the result of test is outside these tolerances.

Test:	Subtest:	Status:	Uncertanity (dB) / Coverage Factor
Self-generated noise	A	Pass	0.3
-	С	Pass	0.8 2.1
	Lin	Pass	1.6 2.2
Linearity range for Leq	At reference range, Step 5 dB at 4 kHz	Pass	0.3
	Reference SPL on all other ranges	Pass	0.3
	2 dB below upper limit of each range	Pass	0.3
	2 dB above lower limit of each range	Pass	0.3
Linearity range for SPL	At reference range, Step 5 dB at 4 kHz	Pass	0.3
Frequency weightings	A	Pass	0.3
	С	Pass	0.3
	Lin	Pass	0.3
Time weightings	Single Burst Fast	Pass	0.3
	Single Burst Slow	Pass	0.3
Peak response	Single 100µs rectangular pulse	Pass	0.3
R.M.S. accuracy	Crest factor of 3	Pass	0.3
Time weighting I	Single burst 5 ms at 2000 Hz	Pass	0.3
71. Filespeciel - Connected Science Sciences	Repeated at frequency of 100 Hz	Pass	0.3
Time averaging	1 ms burst duty factor 1/10 ³ at 4kHz	Pass	0.3
	1 ms burst duty factor 1/10 ⁴ at 4kHz	Pass	0.3
Pulse range	Single burst 10 ms at 4 kHz	Pass	0.4
Sound exposure level	Single burst 10 ms at 4 kHz	Pass	0.4
Overload indication	SPL	Pass	0.3
ಕಾರ್ಯವರ್ಷಕರ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕಾರ್ಯಕರ್ ಕ	Leq	Pass	0.4

2, Acoustic tests


The complete sound level meter was calibrated on the reference range using a B&K 4226 acoustic calibrator with 1000Hz and SPL 94 dB. The sensitivity of the sound level meter was adjusted. The test result at 125 Hz and 8000 Hz are given in below with test status and the estimated uncertainties.

Test:	Subtest	Status	Uncertanity (dB) / Coverage Factor
Acoustic response	Weighting A at 125 Hz	Pass	0.3
	Weighting A at 8000 Hz	Pass	0.5

3, Response to associated sound calibrator

N/A

The uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95 %. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

© Soils & Materials Engineering Co., Ltd.

Form No.CARP152-2/Issue 1/Rev.C/01/02/2007

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

综合試驗 有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Test Data for So	und Level Me	eter				Page 1 of 5
Sound level me	eter type:	CEL-63X	Serial No.	4181587	Date	09-Sep-2019
Microphone	type:	CEL-251	Serial No.	02781		
					Report	: 19CA0905 03-01

SELF GENERATED NOISE TEST

The noise test is performed in the most sensitive range of the SLM with the microphone replaced by an equivalent impedance.

Noise level in A weighting	13.4	dB
Noise level in C weighting	24.2	dB
Noise level in Lin	29.6	dB

LINEARITY TEST

The linearity is tested relative to the reference sound pressure level using a continuous sinusoidal signal of frequency 4 kHz. The measurement is made on the reference range for indications at 5 dB intervals starting from the 94 dB reference sound pressure level. And until within 5 dB of the upper and lower limits of the reference range, the measurements shall be made at 1 dB intervals.(SLM set to LEQ/SPL)

Reference/Expected level	Actual level		Tolerance	Devia	Deviation		
Reference/Expected level	non-integrated	integrated		non-integrated	integrated		
dB	dB	dB	+/- dB	dB	dB		
94.0	94.0	94.0	0.7	0.0	0.0		
99.0	99.0	99.0	0.7	0.0	0.0		
104.0	104.0	104.0	0.7	0.0	0.0		
109.0	109.0	109.0	0.7	0.0	0.0		
114.0	114.0	114.0	0.7	0.0	0.0		
119.0	119.0	119.0	0.7	0.0	0.0		
124.0	124.0	124.0	0.7	0.0	0.0		
129.0	129.0	129.0	0.7	0.0	0.0		
134.0	134.0	134.0	0.7	0.0	0.0		
135.0	135.0	135.0	0.7	0.0	0.0		
136.0	136.0	136.0	0.7	0.0	0.0		
137.0	137.0	137.0	0.7	0.0	0.0		
138.0	138.0	138.0	0.7	0.0	0.0		
139.0	139.0	139.0	0.7	0.0	0.0		
140.0	140.0	140.0	0.7	0.0	0.0		
89.0	89.0	89.0	0.7	0.0	0.0		
84.0	84.0	84.0	0.7	0.0	0.0		
79.0	79.0	79.0	0.7	0.0	0.0		
74.0	74.0	74.0	0.7	0.0	0.0		
69.0	69.0	69.0	0.7	0.0	0.0		
64.0	64.0	64.0	0.7	0.0	0.0		
59.0	59.0	59.0	0.7	0.0	0.0		
54.0	54.0	54.0	0.7	0.0	0.0		
49.0	48.9	48.9	0.7	-0.1	-0.1		

(c)Soils Materials Eng. Co., Ltd.

Form No.: CAWS 152/Issue 1/Rev. B/01/02/2007

試驗有限公司 綜 合 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Test Data for Sound Level Me	eter					Page 2 of 5
Sound level meter type:	CEL-63X		Serial No.	4181587	Date	09-Sep-2019
Microphone type:	CEL-251		Serial No.	02781		
					Report	: 19CA0905 03-01
44.0	44.0	44.0	0.7		0.0	0.0
39.0	39.0	39.0	0.7		0.0	0.0
34.0	34.0	34.0	0.7		0.0	0.0
33.0	33.0	33.0	0.7		0.0	0.0
32.0	32.0	32.0	0.7		0.0	0.0
31.0	31.0	31.0	0.7		0.0	0.0
30.0	30.0	30.0	0.7		0.0	0.0

Measurements for an indication of the reference SPL on all other ranges which include it

Other ranges	Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	94.0	94.0	0.7	0.0

Measurements on all level ranges for indications 2 dB below the upper limit and 2 dB above the lower limit

Ranges	Reference/Expected level	Actual level	Tolerance	Deviation
dB	dB	dB	+/- dB	dB
20-140	30.0	30.0	0.7	0.0
20-140	138.0	138.0	0.7	0.0

FREQUENCY WEIGHTING TEST

The frequency response of the weighting netwoks are tested at octave intervals over the frequency ranges 31.5 Hz to 12500 Hz. The signal level at 1000 Hz is set to give an indication of the reference SPL. Frequency weighting A:

dB	ID				
	dB	dB	+	-	dB
94.0	94.0	94.0	0.0	0.0	0.0
94.0	54.6	54.7	1.5	1.5	0.1
94.0	67.8	67.8	1.5	1.5	0.0
94.0	77.9	77.9	1.0	1.0	0.0
94.0	85.4	85.3	1.0	1.0	-0.1
94.0	90.8	90.8	1.0	1.0	0.0
94.0	95.2	95.2	1.0	1.0	0.0
94.0	95.0	94.9	1.0	1.0	-0.1
94.0	92.9	92.6	1.5	3.0	-0.3
94.0	89.7	88.3	3.0	6.0	-1.4
1	94.0 94.0 94.0 94.0 94.0 94.0 94.0 94.0	94.054.694.067.894.077.994.085.494.090.894.095.294.095.094.092.994.089.7	94.054.654.794.067.867.894.077.977.994.085.485.394.090.890.894.095.295.294.092.992.694.089.788.3	94.054.654.71.594.067.867.81.594.077.977.91.094.085.485.31.094.090.890.81.094.095.295.21.094.095.094.91.094.092.992.61.594.089.788.33.0	94.054.654.71.51.594.067.867.81.51.594.077.977.91.01.094.085.485.31.01.094.090.890.81.01.094.095.295.21.01.094.095.094.91.01.094.092.992.61.53.094.089.788.33.06.0

Tolerance(dB) Deviation Frequency Ref. level Expected level Actual level dB + dB Hz dB dB 0.0 0.0 0.0 1000.0 94.0 94.0 94.0 1.5 -0.1 31.6 94.0 91.0 90.9 1.5 63.1 94.0 93.2 93.2 1.5 1.5 0.0 93.8 1.0 0.0 125.9 94.0 93.8 1.0

(c)Soils Materials Eng. Co., Ltd.

Form No : CAWS 152/Issue 1/Rev. B/01/02/2007

試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

ound level me	ter type:	CEL-63X	Serial No.	418	1587	Date	09-Sep-2019
licrophone	type:	CEL-251	Serial No.	027	81		
						Report:	19CA0905 03-
251.2	94.0	94.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	94.0	1.0	1.0	0.0	
1995.0	94.0	93.8	93.8	1.0	1.0	0.0	
3981.0	94.0	93.2	93.1	1.0	1.0	-0.1	
7943.0	94.0	91.0	90.7	1.5	3.0	-0.3	
12590.0	94.0	87.8	86.4	3.0	6.0	-1.4	
requency weig	hting Lin:						
Frequency	Ref. lev	el Expected level	Actual level	Tolera	nce(dB)	Deviation	า
Hz	dB	dB	dB	+	-	dB	
1000.0	94.0	94.0	94.0	0.0	0.0	0.0	
31.6	94.0	94.0	93.9	1.5	1.5	-0.1	
63.1	94.0	94.0	93.9	1.5	1.5	-0.1	
125.9	94.0	94.0	94.0	1.0	1.0	0.0	
251.2	94.0	94.0	94.0	1.0	1.0	0.0	
501.2	94.0	94.0	94.0	1.0	1.0	0.0	
1995.0	94.0	94.0	94.0	1.0	1.0	0.0	
3981.0	94.0	94.0	93.9	1.0	1.0	-0.1	
7943.0	94.0	94.0	94.0	1.5	3.0	0.0	
12590.0	94.0	94.0	93.8	3.0	6.0	-0.2	

TIME WEIGHTING FAST TEST

Time weighting F is tested on the reference range with a single sinusoidal burst of duration 200 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level Actual level		Tolera	Deviation	
dB	dB	dB	+	- ,	dB
136.0	135.0	135.0	1.0	1.0	0.0

TIME WEIGHTING SLOW TEST

Time weighting S is tested on the reference range with a single sinusoidal burst of duration 500 ms at a frequency 2000 Hz and an amplitude which produces an indication 4 dB below the upper limit of the primary indicator range when the signal is continuous. (Weight A, Maximum hold)

Ref. level	Expected level	Actual level	Tolera	nce(dB)	Deviation
dB	dB	dB	+	-	dB
136.0	131.9	131.9	1.0	1.0	0.0

PEAK RESPONSE TEST

The onset time of the peak detector is tested on the reference range by comparing the response to a 100 us rectangular test pulse with the response to a 10 ms reference pulse of the same amplitude. The amplitude of the 10 ms reference pulse is such as to produce an indication 1 dB below the upper limit of the primary indicator range. Positive polarities: (Weighting Z, set the generator signal to single, Lzpeak)

Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黃竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

Test Data for Sound Level M	eter				Page 4 of 5
Sound level meter type: Microphone type:	CEL-63X CEL-251	Serial No. Serial No.	4181587 02781	Date Report:	09-Sep-2019 19CA0905 03-01
dB	dB	dB	+/- dB	dB	10
139.0	139.0	139.3	2.0	0.3	
Negative polarities:					
Ref. level	Response to 10 ms	Response to 100 us	Tolerance	Deviation	า
dB	dB	dB	+/- dB	dB	
139.0	139.0	139.3	2.0	0.3	

RMS ACCURACY TEST

The RMS detector accuracy is tested on the reference range for a crest factor of 3.

Test frequency Amplitude: Burst repetitior Tone burst sig	n frequency:	2000 Hz 2 dB below the upper limit of the primary indicator range. 40 Hz 11 cycles of a sine wave of frequency 2000 Hz. (Set to INT)				
	Ref. Level	Expected level	Tone burst signal	Tolerance	Deviation	
Time wighting	dB	dB	indication(dB)	+/- dB	dB	
Slow	136.0+6.6	136.0	135.7	0.5	-0.3	

TIME WEIGHTING IMPULSE TEST

Time weighting I is tested on the reference range (Set the SLM to LAImax)

Test frequency:2000 HzAmplitude:The upper

The upper limit of the primary indicator range.

Single sinusoidal burst of duration 5 ms:

Ref. Leve	I Single burs	Single burst indication		Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
140.0	131.2	130.9	2.0	-0.3	

Repeated at 100 Hz

Ref. Level	Repeated burst indication		Tolerance	Deviation	
dB	Expected (dB)	Actual (dB)	+/- dB	dB	
140.0	137.3	136.9	1.0	-0.4	

TIME AVERAGING TEST

This test compares the SLM reading for continuous sine signals with readings obtained from a sine tone burst sequence having the same RMS level. The test level is 30 dB below the upper limit of the linearity range and repeated for Type 1 SLM with 40 dB below the upper limit of the linearity.

Frequency of tone burst:	4000 Hz					
Duration of tone burst:	1 ms					
Repetition Time	Level of	Expected	Actual	Tolerance	Deviation	Remarks
	tone burst	Leq	Leq			
msec	dB	dB	dB	+/- dB	dB	
1000	110.0	110.0	109.9	1.0	-0.1	60s integ.
10000	100.0	100.0	99.9	1.0	-0.1	6min. integ

PULSE RANGE AND SOUND EXPOSURE LEVEL TEST

The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range Test frequency: 4000 Hz

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD.

香港黄竹坑道37號利達中心12樓 12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. E-mail: smec@cigismec.com Website: www.cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

SMECLab

 Test Data for Sound Level Meter
 Page 5 of 5

 Sound level meter type:
 CEL-63X
 Serial No.
 4181587
 Date
 09-Sep-2019

 Microphone
 type:
 CEL-251
 Serial No.
 02781
 Report: 19CA0905 03-01

Integration time: 10 sec

The integrating sound level meter set to Leq:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10	138.0	108.0	107.6	1.7	-0.4

The integrating sound level meter set to SEL:

Duration	Rms level of	Expected	Actual	Tolerance	Deviation
msec	tone burst (dB)	dB	dB	+/- dB	dB
10.0	138.0	118.0	118.0	1.7	0.0

OVERLOAD INDICATION TEST

For SLM capable of operating in a non-integrating mode.

Test frequer	ncy:	2000 Hz				
Amplitude:		2 dB below the upper limit of the primary indicator range.				
Burst repetit	ion frequency:	40 Hz				
Tone burst signal:		11 cycles of a sine wave of frequency 2000 Hz.				
Level	Level reduced by	Further reduced	Difference	Tolerance	Deviation	
at overload (dB)	1 dB	3 dB	dB	dB	dB	
135.1	134.1	131.1	3.0	1.0	0.0	

For integrating SLM, with the instrument indicating Leq.

 For integrating SLM, with the instrument indicating Leq and set to the reference range. The test signal as following:

 The test tone burst signal is superimposed on a baseline signal corresponding to the lower limit of reference range

 Test frequency:
 4000 Hz

 Integration time:
 10 sec

 Single burst duration:
 1 msec

onigie baiot	duration.	1 11000			
Rms level	Level reduced by	Expected level	Actual level	Tolerance	Deviation
at overload (dB)	1 dB	dB	dB	dB	dB
141.2	140.2	100.2	99.8	2.2	-0.4

ACOUSTIC TEST

The acoustic test of the complete SLM is tested at the frequency 125 Hz and 8000 Hz using a B&K type 4226 Multifunction Acoustic Calibrator. The test is performed in A weighting.

Frequency Expected level Hz dB		Actual level	Tolerar	Tolerance (dB)		
		Measured (dB)	+	+ -		
1000	94.0	94.0	0.0	0.0	0.0	
125	77.9	77.9	1.0	1.0	0.0	
8000	92.9	93.2	1.5	3.0	0.3	

-----END------

(c)Soils Materials Eng. Co . Ltd

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong. Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Page 1 of 1

Report no.: 183057CA195873(1)

CALIBRATION CERTIFICATE OF SOUND CALIBRATOR

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Sound Calibrator
Manufacturer	:	Casella (Model CEL-120/1)
Serial No.	0	4358251
Equipment ID	3	N-34
Next Calibration Date	1	25-Jul-2020
Specification Limit	1	EN 60942: 2003 Type 1

Laboratory Information

Description	1	Reference Sound level	meter		
Equipment ID.	:	R-119-1			
Date of Calibrat	tion	: 26-Jul-2019	Ambient Temperature :	22	°C
Calibration Loca	atior	n: Calibration Laborato	ry of MateriaLab		
Method Used		By direct comparison			

Calibration Results :

Parameters (Setting of UUT)	Mean Value (error of measurement)	Specification Limit(dB)
94dB	B -0.1 dB	
114dB	0.0 dB	±0.4dB

Remarks :

- 1. The equipment used in this calibration is traceable to recognized National Standards.
- 2. The mean value is the average of four measurements.
- 3. The equipment does comply with the specification limit.
- 4. The values given in this Calibration Certificate only relate to the values at the time of the test and any uncertainties will not include allowance for the equipment long term drift, variations with environment changes, vibration and shock during tranportation, overloading, mis-handling or the capability of any other laboratory to repeat the measurement.

Checked by : William	Date : 26-7-2019	Certified by :	K.T. Loung	Date : 16-7-2019
CA-R-297 (22/07/2009)		Leung	Kwok Tai (Assista	ant Manager)

** End of Report **

This report shall not be reproduced except in full with prior written approval from the Company.

Tel: (852) 2873 6860 Fax: (852) 2555 7533

CERTIFICATE OF CALIBRATION

Certificate No.:	19CA0905 03-04		Page:	1 of 2
Item tested				
Description:	Acoustical Calibra	tor (Class 1)		
Manufacturer:	CASELLA			
Type/Model No.:	CEL-120/1			
Serial/Equipment No.:	5230736 / N-18			
Adaptors used:	11 7 1			
Item submitted by				
Curstomer:	Furgo Technical S	Services Limited		
Address of Customer:	50 (12)			
Request No.:	8			
Date of receipt:	05-Sep-2019			
Date of test:	09-Sep-2019			
Reference equipment	used in the calib	oration		
Description:	Model:	Serial No.	Expiry Date:	Traceable to:
Lab standard microphone	B&K 4180	2341427	03-May-2020	SCL
Preamplifier	B&K 2673	2239857	17-May-2020	CEPREI
Measuring amplifier	B&K 2610	2346941	05-Jun-2020	CEPREI
Signal generator	DS 360	61227	10-May-2020	CEPREI
Digital multi-meter	34401A	US36087050	08-May-2020	CEPREI
Audio analyzer	8903B	GB41300350	13-May-2020	CEPREI
Universal counter	53132A	MY40003662	10-May-2020	CEPREI
Ambient conditions				
	$21 \pm 1^{\circ}$ C			

Temperature: $21 \pm 1 \,^{\circ}\text{C}$ Relative humidity: $55 \pm 10 \,\%$ Air pressure: $1000 \pm 5 \,\text{hPa}$

Test specifications

- 1. The Sound Calibrator has been calibrated in accordance with the requirements as specified in IEC 60942 1997 Annex B and the lab calibration procedure SMTP004-CA-156.
- 2, The calibrator was tested with its axis vertical facing downwards at the specific frequency using insert voltage technique.
- 3. The results are rounded to the nearest 0.01 dB and 0.1 Hz and have not been corrected for variations from a reference pressure of 1013.25 hectoPascals as the maker's information indicates that the instrument is insensitive to pressure changes.

Test results

This is to certify that the sound calibrator conforms to the requirements of annex B of IEC 60942. 1997 for the conditions under which the test was performed. This does not imply that the sound calibrator meets IEC 60942 under any other conditions.

Details of the performed measurements are presented on page 2 of this certificate.

Fend Jungi

Date: 09-Sep-2019

SENGINE SENGINE

Comments: The results reported in this certificate refer to the conditon of the instrument on the date of calibration and carry no implication regarding the long-term stability of the instrument.

© Soils & Materials Engineering Co., Ltd.

Approved Signatory:

Form No CARP156-1/Issue 1/Rev.D/01/03/2007

Company Chop:

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

綜合試驗有限公司 SOILS & MATERIALS ENGINEERING CO., LTD. 香港黄竹坑道37號利達中心12樓

12/F., Leader Centre, 37 Wong Chuk Hang Road, Aberdeen, Hong Kong. Website: www.cigismec.com E-mail: smec@cigismec.com

Tel: (852) 2873 6860 Fax: (852) 2555 7533

2

CERTIFICATE OF CALIBRATION

(Continuation Page)

Certificate No .:

19CA0905 03-04

2 of Page:

Measured Sound Pressure Level 1.

> The output Sound Pressure Level in the calibrator head was measured at the setting and frequency shown using a calibrated laboratory standard microphone and insert voltage technique. The results are given in below with the estimated uncertainties.

Frequency	Output Sound Pressure	Measured Output	Estimated Expanded
Shown	Level Setting	Sound Pressure Level	Uncertainty
Hz	dB	dB	dB
1000	94.00	94.23	0.10

Sound Pressure Level Stability - Short Term Fluctuations 2.

The Short Term Fluctuations was determined by measuring the maximum and minimum of the fast weighted DC output of the B&K 2610 measuring amplifier over a 20 second time interval as required in the standard. The Short Term Fluctuation was found to be:

At 1000 Hz	STF = 0.019 dB
Estimated expanded uncertainty	0.005 dB

Actual Output Frequency 3,

The determination of actual output frequency was made using a B&K 4180 microphone together with a B&K 2673 preamplifier connected to a B&K 2610 measuring amplifier. The AC output of the B&K 2610 was taken to an universal counter which was used to determine the frequency averaged over 20 second of operation as required by the standard. The actual output frequency at 1 KHz was:

At 1000 Hz Actual Frequency = 1000.0 Hz		
Estimated expanded uncertainty	0.1 Hz	Coverage factor k = 2.2

Total Noise and Distortion 4,

For the Total Noise and Distortion measurement, the unfiltered AC output of the B&K 2610 measuring amplifier was connected to an Agilent Type 8903 B distortion analyser. The TND result at 1 KHz was:

At 1000 Hz	TND = 0.8 %	
Estimated expanded uncertainty	0.7 %	

The expanded uncertainties have been calculated in accordance with the ISO Publication "Guide to the expression of uncertainty in measurement", and gives an interval estimated to have a level of confidence of 95%. A coverage factor of 2 is assumed unless explicitly stated.

The standard(s) and equipment used in the calibration are traceable to national or international recognised standards and are calibrated on a schedule to maintain the required accuracy level.

C Soils & Materials Engineering Co., Ltd.

Form No.CARP156-2/Issue 1/Rev.C/01/05/2005

Hong Kong Accreditation Service (HKAS) has accredited this laboratory (Reg. No. HOKLAS 028) under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific calibration activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this certificate are traceable to the International System of Units (SI) or recognised measurement standards. This certificate shall not be reproduced except in full.

FUGRO TECHNICAL SERVICES LIMITED

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.
 Tel
 : +852 2450 8233

 Fax
 : +852 2450 6138

 E-mail
 : matlab@fugro.com

 Website
 : www.fugro.com

Report No. : 183057CA195782(1)

Page 1 of 1

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description :	Anemometer
Manufacturer :	Benetech
Model No.	GM816
Serial No.	N/A
Equipment ID.:	WS-08
Next Calibration Date :	17-Jun-2020

Laboratory Information

Details of Reference Equipment -

Description :	Reference Anemometer			
Equipment ID.:	R-101-4			
Date of Calibration :	18-Jun-2019	Ambient Temperature	:	22 °C
Calibration Location	Calibration Laboratory o	f FTS		
Method Used : R-C-2	79			

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.05	1.0	-1.1
4.08	3.1	-1.0
6.07	4.8	-1.3
8.03	6.7	-1.3
10.14	8.8	-1.3

Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

Checked by: William Date: 20-6-2019 Certified by: Kit Loung Date: 24-6-2019 Leung Kwok Tai (Assistant Manager) CA-R-297 (22/07/2009)

** End of Report **

Fugro Development Centre 5 Lok Yi Street, Tai Lam Tuen Mun, NT Hong Kong

Page 1 of 1

Report No.: 183057CA200894(3)

CALIBRATION CERTIFICATE OF ANEMOMETER

Client Supplied Information

Client : Fugro Technical Services Ltd.

Project : Calibration Services

Details of Unit Under Test, UUT

Description	:	Anemometer
Manufacturer	:	Benetech
Model No.	:	GM816
Serial No.	:	N/A
Equipment ID	.:	WS-08
Next Calibration Date	:	14-Jun-2021

Laboratory Information

Details of Reference Equipment –				
Description :	Reference Anemometer			
Equipment ID.:	R-101-4			
Date of Calibration :	15-Jun-2020	Ambient Temperature	:	22 °C
Calibration Location :	Calibration Laboratory of	f FTS		
Method Used : R-C-279				

Calibration Results :

Reference Reading	UUT Reading	Error
(m/s)	(m/s)	(m/s)
2.02	2.0	0.0
4.15	4.1	-0.1
6.27	6.0	-0.3
8.43	8.0	-0.4
10.75	10.1	-0.7

Remark :

1. The equipment being used in this calibration is traceable to recognized National Standards.

2. The reported readings in this calibration are an average from 10 trials.

Checked by :	Date : <u> 20 - 6 - 2026</u>			
CA-R-297 (22/07/2009)		Leu	ng Kwok Tai (Assi	stant Manager)

** End of Report **

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix E

Environmental Monitoring Schedule

Tel

Fugro Development Centre, 5 Lok Yi Street, Tai Lam, Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (June 2020)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
	1 TSP Monitoring Noise Monitoring	2	3	4	5	6 TSP Monitoring Noise Monitoring
7	8	9	10	11	12 TSP Monitoring Noise Monitoring	13
14	15	16	17	18 TSP Monitoring Noise Monitoring	19	20
21	22	23	24 TSP Monitoring Noise Monitoring	25	26	27
28	29	30 TSP Monitoring Noise Monitoring				

Remarks

1. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station), KER1b: Site Boundary at Cheung Yip Street

2. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

3. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (July 2020)

Tel

Sun	Mon	Tue	Wed	Thur	Fri	Sat
			1	2	3	4
5	6 TSP Monitoring Noise Monitoring	7	8	9	10	11 TSP Monitoring Noise Monitoring
12	13	14	15	16	17 TSP Monitoring Noise Monitoring	18
19	20	21	22	23 TSP Monitoring Noise Monitoring	24	25
26	27	28	29 TSP Monitoring Noise Monitoring	30	31	

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Fugro Development Centre,
5 Lok Yi Street, Tai Lam,
Tuen Mun, N.T.,
Hong Kong.

Tel : +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: <u>KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the</u> <u>Southern Part of the Former Runway</u>

Impact Monitoring Schedule (August 2020)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
						1
2	3	4 TSP Monitoring Noise Monitoring	5	6	7	8
9	10 TSP Monitoring Noise Monitoring	11	12	13	14	15 TSP Monitoring Noise Monitoring
16	17	18	19	20	21 TSP Monitoring Noise Monitoring	22
23	24 31	25	26	27 TSP Monitoring Noise Monitoring	28	29

Remarks

- 1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition
- 2. Monitoring Locations KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station), KER1b: Site Boundary at Cheung Yip Street
- 3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)
- 4. Noise Monitoring: Leq (30 min) between 0700 and 1900 hours.

Tel

Fugro Development Centre, 5 Lok Yi Street. Tai Lam. Tuen Mun, N.T., Hong Kong.

: +852 2450 8233 Fax : +852 2450 6138 E-mail : matlab@fugro.com Website : www.fugro.com

Project: KL/2014/03 - Kai Tak Development – Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Impact Monitoring Schedule (September 2020)

Sun	Mon	Tue	Wed	Thur	Fri	Sat
		1	2 TSP Monitoring Noise Monitoring	3	4	5
6	7	8 TSP Monitoring Noise Monitoring	9	10	11	12
13	14 TSP Monitoring Noise Monitoring	15	16	17	18	19 TSP Monitoring Noise Monitoring
20	21	22	23	24	25 TSP Monitoring Noise Monitoring	26
27	28	29	30			

Remarks

1. Actual monitoring may be subjected to change due to any safety concern or adverse weather condition

2. Monitoring Locations - KTD1a: Centre of Excellence in Paediatric (Children's Hospital), KTD2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station), KER1b: Site Boundary at Cheung Yip Street

3. TSP Monitoring: 24-hours TSP Monitoring per 6 days, and 3 x 1-hour TSP Monitoring per 6 days (as required in case of complaints)

4. Noise Monitoring: Leg (30 min) between 0700 and 1900 hours.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix F

Air Quality Monitoring Data

24-hour TSP Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

Start Date	Weather Condition	Air Temperature	Atmospheric Pressure, Pa	Eliter vv	eight (g)	Particulate weight (g)	Sampling Time(hrs)	(m^{3})	Rate min.)	Average flow	Total volume (m ³⁾		Action Level	Limit Level
	Condition	(K)	(mmHg)	Initial	Final	Initial Final (m ³ /mi	(m ³ /min.)	(m ²	(ug/m ³)	(ug/m ³)	(ug/m ³)			
1-Jun-20	Fine	302.9	757.7	2.7060	2.7975	0.0915	24	1.65	1.67	1.66	2395.5	38		
6-Jun-20	Cloudy	299.8	755.5	2.7213	2.8315	0.1102	24	1.51	1.52	1.51	2180.6	51		
12-Jun-20	Fine	303.4	754.1	2.6825	2.7574	0.0749	24	1.57	1.60	1.58	2281.2	33	177	260
18-Jun-20	Fine	302.5	756.4	2.6755	2.7428	0.0673	24	1.65	1.67	1.66	2395.2	28	1//	200
24-Jun-20	Fine	303.4	754.9	2.7199	2.7860	0.0661	24	1.42	1.44	1.43	2062.6	32		
30-Jun-20	Fine	303.7	753.5	2.7823	2.8237	0.0414	24	1.19	1.21	1.20	1731.9	24		
											Min	24		
											Max	51		
											Average	34	1	

KTD1a - Centre of Excellence in Paediatrics (Children's Hospital)

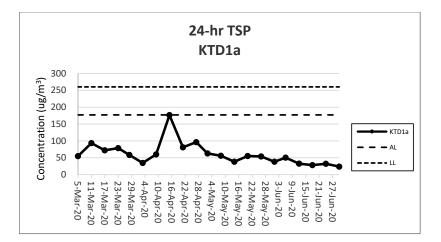
KTD 2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)

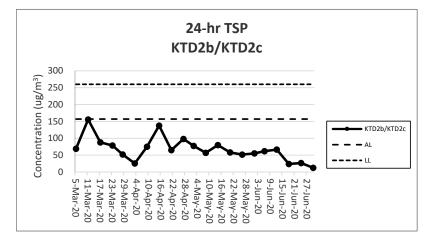
			g =) pass (
Start Date	Weather Condition	Air Temperature (K)	Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /r	Rate min.)	Average flow	Total volume (m ³⁾	Conc. (ug/m ³)	Action Level	Limit Level
	Condition	(IX)	(mmHg)	Initial	Final	weigin (g)	11116(1115)	Initial	Final	(m ³ /min.)	(111)	(ug/m)	(ug/m ³)	(ug/m ³)
1-Jun-20	Fine	302.9	757.7	2.7266	2.8567	0.1301	24	1.62	1.64	1.63	2344.5	55		
6-Jun-20	Cloudy	299.8	755.5	2.7060	2.8335	0.1275	24	1.43	1.44	1.43	2063.8	62		
12-Jun-20	Fine	303.4	754.1	2.6854	2.8451	0.1597	24	1.65	1.68	1.66	2396.5	67	157	260
18-Jun-20	Fine	302.5	756.4	2.6485	2.7009	0.0524	24	1.50	1.52	1.51	2172.6	24	157	200
24-Jun-20	Fine	303.4	754.9	2.6754	2.7333	0.0579	24	1.49	1.52	1.51	2169.0	27		
30-Jun-20	Fine	303.7	753.5	2.7857	2.8116	0.0259	24	1.41	1.44	1.43	2052.7	13		
											Min	13		
											Max	67		

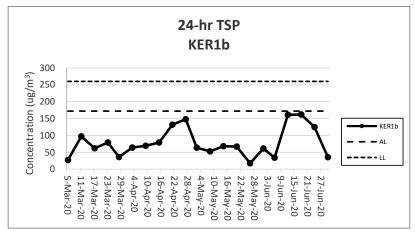
Average

Max

Average


41


162 96


KER1b - Site Boundary at Cheung Yip Street

Start Date	Weather Condition	Air Temperature (K)	Atmospheric Pressure, Pa	Filter W	eight (g)	Particulate weight (g)	Sampling Time(hrs)	Flow (m ³ /r		Average flow	Total volume (m ³⁾		Action Level	Limit Level
	Condition	(13)	(mmHg)	Initial	Final	weight (g)	11116(1113)	Initial	Final	(m ³ /min.)	(III	(ug/m³)	(ug/m^3)	(ug/m^3)
1-Jun-20	Fine	302.9	757.7	2.7129	2.8439	0.1310	24	1.48	1.49	1.48	2137.7	61		
6-Jun-20	Cloudy	299.8	755.5	2.7336	2.8060	0.0724	24	1.48	1.49	1.49	2140.3	34		
12-Jun-20	Fine	303.4	754.1	2.6871	3.0452	0.3581	24	1.48	1.49	1.48	2224.4	161	172	260
18-Jun-20	Fine	302.5	756.4	2.7790	3.1715	0.3925	24	1.68	1.69	1.68	2424.9	162	172	200
24-Jun-20	Fine	303.4	754.9	2.7144	2.9803	0.2659	24	1.48	1.49	1.48	2135.8	124		
30-Jun-20	Fine	303.7	753.5	2.7810	2.8567	0.0757	24	1.48	1.49	1.48	2134.8	35		
											Min	34		

Note: <u>Underline</u>: Exceedance of Action Level <u>Underline and Bold</u>: Exceedance of Limit Level

Note:

1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2

2) The weather conditions during the reporting period can be referred to Appendix K.

3) Any other factors which might affect the monitoing results can be referred to Section 2.6.4.

4) KTD 2b was relocated to KTD 2c on 8 April 2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix G

Noise Monitoring Data

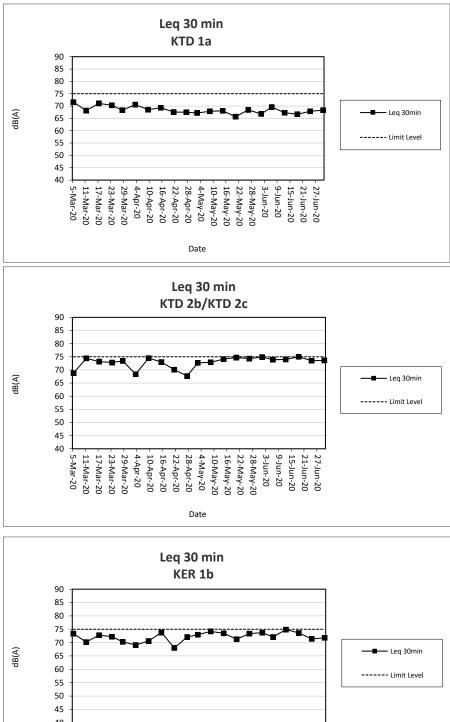
Noise Impact Monitoring Result for Kai Tak Development - Stage 3 Infrastructure Works for Developments at the Southern Part of the Former Runway

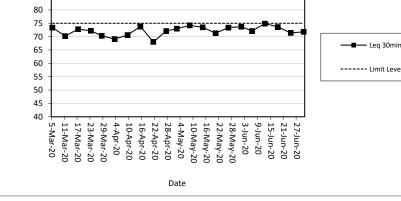
Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
1-Jun-20	09:42	67	68	64	0.2	Fine
6-Jun-20	08:31	70	71	67	0.6	Cloudy
12-Jun-20	09:00	67	70	65	0.0	Fine
18-Jun-20	08:34	67	69	64	0.2	Fine
24-Jun-20	08:45	68	70	66	0.3	Fine
30-Jun-20	08:30	68	70	65	0.5	Fine
	Max	70				
	Min	67				
	Limit Level	75				

KTD 1a: Centre of Excellence in Paediatrics (Children's Hospital)

KTD 2c: G/IC Zone next to Kwun Tong Bypass (Next to the Kowloon Bay Sewage Interception Station)

		Leq 30min	L10	L90	Wind Speed	
Date	Start Time	dB(A)	dB(A)	dB(A)	(m/s)	Weather
1-Jun-20	10:29	75	79	71	0.2	Fine
6-Jun-20	09:11	74	76	72	0.5	Cloudy
12-Jun-20	09:39	74	79	73	0.0	Fine
18-Jun-20	09:13	75	76	74	0.4	Fine
24-Jun-20	09:26	74	75	72	0.2	Fine
30-Jun-20	09:12	74	74	73	0.7	Fine
	Max	75				
	Min	74				
	Limit Level	75				


KER 1b: Site Boundary at Cheung Yip Street


Date	Start Time	Leq 30min dB(A)	L10 dB(A)	L90 dB(A)	Wind Speed (m/s)	Weather
1-Jun-20	09:00	74	74	73	0.4	Fine
6-Jun-20	09:52	72	73	71	0.4	Cloudy
12-Jun-20	10:22	75	82	73	0.5	Fine
18-Jun-20	09:56	74	75	73	0.0	Fine
24-Jun-20	10:07	71	72	70	0.4	Fine
30-Jun-20	09:58	72	73	71	0.5	Fine
	Max	75				
	Min	71				
	Limit Level	75				

Note: KTD1a: Façade Measurement

KTD2c & KER1b: Free-field measurement (+3dB(A) correction has been applied)

No raining or wind with speed over 5 m/s was observed during noise monitoring according to the onsite observation.

Note:

1) The major activities being carried out on site during the reporting period can be referred to Section 1.3.2.

2) The weather conditions during the reporting period can be referred to Appendix K.

3) Any other factors which might affect the monitoing results can be referred to Section 3.7.2.

4) QA/QC results, calibration results and detection limits can be referred to Appendix D.

5) KTD 2b was relocated to KTD 2c on 8 April 2020

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix H

Events and Action Plan

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Event and Action Plan for Construction Dust Monitoring

EVENT	ACTION			
	ET	IEC	ER	Contractor
Action Level	1 Identify against	1 Chook mentaring	1 Notify the Contractor	1 Destify on
Exceedance for one sample.	 Identify sources, investigate the causes of complaint and propose remedial measures. Inform IEC and ER. Repeat measurement to confirm finding;. Increase monitoring frequency 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. 	1. Notify the Contractor.	 Rectify any unacceptable practices. Amend working methods agreed with the ER as appropriate.
Exceedance for two or more consecutive samples.	 Indentify sources. Inform the IEC and ER. Advise the ER on the effectiveness of the proposed remedial measures; Repeat measurements to confirm findings. Increase monitoring frequency to daily. Discuss with the IEC, ER and Contractor on remedial action required. If exceedance continues, arrange meeting with the IEC, Contractor and ER. If exceedance stops, cease additional monitoring. 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. Discuss with the ET, ER and Contractor on possible remedial measures if required. Advise the ER on the effectiveness of proposed remedial measures if required. 	 Notify the Contractor. Ensure remedial measures properly implemented. 	 Submit proposals for remedial action to the ER within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate
Limit Level				
Exceedance for one sample.	 Identify sources, investigate causes of exceedance and proposed remedial measures. Inform the IEC, ER, and Contractor. Repeat measurement to confirm finding. Increase monitoring frequency to daily. Assess effectiveness of the Contractor's remedial action and keep the IEC and ER informed of the results 	 Check monitoring data submitted by the ET. Check the Contractor's working methods. Discuss with the ET, ER and Contractor on possible remedial measures. Advise the ER and ET on the effectiveness of the proposed remedial measures. Supervise the implementation of remedial measures. 	 Confirm receipt of the notification of exceedance in writing. Notify the Contractor. Ensure remedial measures are properly implemented. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. Implement the agreed proposals. Amend proposal as appropriate.
Exceedance for two or more consecutive samples	 Notify the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Increase monitoring frequency to daily. Carry out analysis of the Contractor's working procedures with the ER to determine the possible mitigation to be implemented. Arrange meeting with the IEC and ER to discuss the remedial 	 Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER and ET accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of the notification of exceedance in writing. Notify the Contractor. In consultation with the IEC and ET, agree with the Contractor on the remedial measures to be implemented. Ensure remedial measures are properly implemented. If exceedance continues, consider 	 Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the IEC and ET within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problems still not under control. Stop the relevant portion of works as determined by the ER

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EVENT	ACTION			
	ET	IEC	ER	Contractor
	action to be taken. 7. Assess the effectiveness of the Contractor's remedial action and keep the IEC, EPD and ER informed of the results. 8. If exceedance stops, cease additional monitoring		what portion of works is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated.	until the exceedance is abated.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Event and Action Plan for Noise Impact

EVENT	ACTION			
EVENI	ET	IEC	ER	Contractor
Action Level	 Notify the IEC, ER and Contractor. Carry out investigation. Report the results of investigation to the IEC and Contractor. Discuss jointly with the ER and Contractor and formulate remedial measures. Increase the monitoring frequency to check the mitigation effectiveness 	 Review the monitoring data submitted by the ET. Review the construction methods and proposed redial measures by the Contractor, and advise the ET and ER if the proposed remedial measures would be sufficient 	 Notify the Contractor. Require the Contractor to propose remedial measures for implementation if required. 	 Submit noise mitigation proposals to the ER and copy to the IEC and ET. Implement noise mitigation proposals.
Limit Level	 Notify the IEC, ER and Contractor. Identify sources. Repeat measurements to confirm findings. Carry out analysis of the Contractor's working procedures with the ER and Contractor to determine possible mitigations to be implemented. Record the causes and action taken for the exceedances. Increase the monitoring frequency. Assess the effectiveness of the Contractor's remedial action with the ER and keep the IEC informed of the results. If exceedance stops, cease additional monitoring 	 Discuss amongst the ER, ET and Contractor on the potential remedial action. Review the Contractor's remedial action whenever necessary to assure their effectiveness and advise the ER accordingly. Supervise the implementation of remedial measures. 	 Confirm receipt of notification of exceedance in writing. Notify the Contractor. Require the Contractor to propose remedial measures for the analysed noise problems. Ensure remedial measures are properly implemented. If exceedance continues, consider what portion of work is responsible and instruct the Contractor to stop that portion of works until the exceedance is abated. 	 Take immediate action to avoid further exceedance. Submit proposals for remedial action to the ER and copy to the ET and IEC within 3 working days of notification. Implement the agreed proposals. Resubmit proposals if problems still not under control. Stop the relevant portion of works as determined by the ER until the exceedance is abated.

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Event and Action Plan for Landscape and Visual Impact

EVENT	ACTION			
	ET	IEC	ER	Contractor
Non-conformity on one occasion	 Identify Source Inform the IEC and the ER Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed 	 Check report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures. Check implementation of remedial measures. 	 Notify Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement
Repeated Non- conformity	 Identify Source Inform the IEC and the ER Increase monitoring frequency Discuss remedial actions with the IEC, the ER and the Contractor Monitor remedial actions until rectification has been completed If exceedance stops, cease additional monitoring 	 Check monitoring report Check the Contractor's working method Discuss with the ET and the Contractor on possible remedial measures Advise the ER on effectiveness of proposed remedial measures Supervise implementation of remedial measures. 	 Notify the Contractor Ensure remedial measures are properly implemented 	 Amend working methods Rectify damage and undertake any necessary replacement

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

Appendix I

Waste Flow Table

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

Waste Flow	Table for Ye	ear 2016									
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2016 Jan	0.159	0.101	0.058	Nil	Nil	Nil	Nil	0.023	0.00002	0.0158	0.0335
2016 Feb	0.291	0.050	0.241	Nil	Nil	Nil	1.34	0.023	0.00002	0.0158	0.0335
2016 Mar	2.7389	0.0407	0.0662	Nil	2.632	Nil	5.92	0.023	0.00002	0.0158	0.0571
2016 Apr	4.1718	0.0578	0.462	Nil	3.652	Nil	12.5	0.023	0.00002	0.0158	0.0426
2016 May	3.592	Nil	0.299	Nil	3.293	Nil	5.23	0.023	0.00002	0.0158	0.0621
2016 Jun	4.6035	Nil	0.8555	Nil	3.748	Nil	Nil	0.023	0.00002	0.0158	0.0619
2016 Jul	6.155	0.153	0.015	Nil	5.987	Nil	7.84	0.023	0.00002	0.0158	0.0433
2016 Aug	5.1155	Nil	Nil	Nil	5.1155	Nil	19.93	0.023	Nil	Nil	0.0147
2016 Sept	7.2267	Nil	Nil	Nil	7.2267	Nil	33.65	0.023	Nil	Nil	0.0103
2016 Oct	4.6448	Nil	Nil	Nil	4.6448	Nil	13.30	0.023	Nil	Nil	0.0385
2016 Nov	6.1626	Nil	Nil	Nil	6.1626	Nil	27.06	0.023	Nil	Nil	0.0192
2016 Dec	6.3522	Nil	Nil	Nil	6.3522	Nil	13.30	0.023	Nil	Nil	0.0121
Total	51.213	0.4025	1.9967	Nil	48.8138	Nil	140.07	0.276	0.00014	0.1106	0.4288

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill - Imported Fill

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

Waste Flow	Table for Ye	ear 2017									
		Actual Quant	ities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2017 Jan	4.2300	Nil	Nil	Nil	4.2300	Nil	0.015	0.023	Nil	Nil	0.0109
2017 Feb	3.2128	Nil	Nil	Nil	3.2128	Nil	0.015	0.023	Nil	Nil	0.0096
2017 Mar	9.4759	Nil	Nil	Nil	9.4759	Nil	0.034	0.023	Nil	Nil	0.0162
2017 Apr	4.8827	Nil	Nil	Nil	4.8827	Nil	0.016	0.023	Nil	Nil	0.0062
2017 May	3.0366	Nil	Nil	Nil	3.0366	Nil	0.022	0.023	Nil	Nil	0.0282
2017 Jun	2.5656	Nil	Nil	Nil	2.5656	Nil	41.25	Nil	Nil	Nil	0.0357
2017 Jul	5.5267	Nil	0.7851	Nil	4.7416	Nil	4.01	0.4515	Nil	0.25	0.0364
2017 Aug	11.4734	Nil	0.0276	Nil	11.4458	Nil	7.4	Nil	Nil	Nil	0.0196
2017 Sep	23.9373	Nil	2.6167	Nil	21.3206	Nil	3.52	Nil	Nil	Nil	0.0333
2017 Oct	17.8261	Nil	0.4069	Nil	17.4192	Nil	Nil	Nil	Nil	Nil	0.0156
2017 Nov	5.8834	Nil	0.6664	Nil	5.217	Nil	Nil	Nil	Nil	Nil	0.023
2017 Dec	21.3554	Nil	0.4763	Nil	20.8791	Nil	29.13	Nil	Nil	Nil	0.022
Total	113.4059	Nil	4.9790	Nil	108.4269	Nil	85.412	0.5665	Nil	0.25	0.2567

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Waste Flow	Table for Ye	ar 2018									
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2018 Jan	10.2340	Nil	Nil	Nil	10.2340	Nil	32.39	Nil	Nil	Nil	0.0161
2018 Feb	6.5256	Nil	Nil	Nil	6.5256	Nil	Nil	Nil	Nil	Nil	0.0235
2018 Mar	28.1995	Nil	Nil	Nil	28.1995	Nil	54.54	Nil	Nil	Nil	0.0190
2018 Apr	11.2165	Nil	Nil	Nil	11.2165	Nil	Nil	Nil	Nil	Nil	0.0270
2018 May	5.6011	Nil	Nil	Nil	5.6011	Nil	Nil	Nil	Nil	Nil	0.0140
2018 Jun	5.8072	Nil	Nil	Nil	5.8072	Nil	93.3	Nil	Nil	Nil	0.0235
2018 Jul	7.4206	Nil	Nil	Nil	7.4206	Nil	Nil	Nil	Nil	Nil	0.0383
2018 Aug	2.0815	Nil	Nil	Nil	2.0815	Nil	Nil	Nil	Nil	Nil	0.0665
2018 Sep	0.3710	Nil	Nil	Nil	0.3710	Nil	Nil	Nil	Nil	Nil	0.0436
2018 Oct	0.9087	Nil	Nil	Nil	0.9620	0.0533	Nil	Nil	Nil	Nil	0.0444
2018 Nov	0.7291	Nil	Nil	Nil	0.7733	0.0589	Nil	Nil	Nil	Nil	0.0225
2018 Dec	-0.0931	Nil	Nil	Nil	0.3860	0.4791	Nil	Nil	Nil	Nil	0.0228
Total	79.0017	Nil	Nil	Nil	79.5783	0.5913	180.23	Nil	Nil	Nil	0.3614

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Waste Flow	Table for Ye	ar 2019									
		Actual Quant	tities of Inert C&I	D Materials Gene	erated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2019 Jan	0.2485	Nil	Nil	Nil	0.7063	0.45774	Nil	Nil	Nil	Nil	0.0100
2019 Feb	0.2790	Nil	Nil	Nil	0.2790	Nil	Nil	Nil	Nil	Nil	0.0076
2019 Mar	0.7376	Nil	Nil	Nil	0.7376	Nil	Nil	Nil	Nil	Nil	0.0929
2019 Apr	0.3694	Nil	Nil	Nil	0.3694	Nil	Nil	Nil	Nil	Nil	0.0365
2019 May	0.4683	Nil	Nil	Nil	0.4683	Nil	Nil	Nil	Nil	Nil	0.0383
2019 Jun	0.8571	Nil	Nil	Nil	0.8571	Nil	Nil	Nil	Nil	Nil	0.0160
2019 Jul	15.2091	Nil	Nil	Nil	15.2091	Nil	Nil	Nil	Nil	Nil	0.0331
2019 Aug	5.7307	Nil	Nil	Nil	5.7307	Nil	Nil	Nil	Nil	Nil	0.0249
2019 Sep	9.0074	Nil	Nil	Nil	9.0074	Nil	Nil	Nil	Nil	Nil	0.0541
2019 Oct	0.6616	Nil	Nil	Nil	0.6616	Nil	Nil	Nil	Nil	Nil	0.0269
2019 Nov	0.8783	Nil	Nil	Nil	0.8783	Nil	Nil	0.17	Nil	Nil	0.0453
2019 Dec	0.6110	Nil	Nil	Nil	0.6110	Nil	Nil	Nil	Nil	Nil	0.0519
Total	35.058	0	0	0	35.5158	0.4577	0	0.17	0	0	0.4375

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill – Imported Fill

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Waste Flow	Table for Ye	ar 2020									
		Actual Quant	tities of Inert C&I	D Materials Gene	rated Monthly		Actual Quantities of Non-inert C&D Wastes Generated Monthly				
Monthly Ending	Total Quantity Generated (Inert C&D)	Hard Rock and Large Broken Concrete	Reused in the Contract	Reused in other Projects	Disposed as Public Fill	Imported Fill	Metals	Paper/ cardboard packaging	Plastics (see Note 2)	Chemical Waste	Others, e.g. general refuse
	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000m ³)	(in '000 kg)	(in '000kg)	(in '000kg)	(in '000kg)	(in '000m ³)
2020 Jan	0.3807	Nil	Nil	Nil	0.3807	Nil	Nil	Nil	Nil	Nil	0.0276
2020 Feb	0.2862	Nil	Nil	Nil	0.2862	Nil	Nil	Nil	Nil	Nil	0.0365
2020 Mar	0.4291	Nil	Nil	Nil	0.4291	Nil	Nil	Nil	Nil	Nil	0.0270
2020 Apr	0.1812	Nil	Nil	Nil	0.1812	Nil	Nil	Nil	Nil	Nil	0.0201
2020 May	0.2966	Nil	Nil	Nil	0.2966	Nil	Nil	Nil	Nil	Nil	0.0168
2020 Jun	0.1691	Nil	Nil	Nil	0.1691	Nil	Nil	Nil	Nil	Nil	0.0079
2020 Jul											
2020 Aug											
2020 Sep											
2020 Oct											
2020 Nov											
2020 Dec											
Total	1.7429	0	0	0	1.7429	0	0	0	0	0	0.1359

Note:

1) The waste flow table shall also include C&D materials that are specified in the Contract to be imported for use at the Site.

2) Plastics refer to plastic bottles/containers, plastic sheets/foam from packaging materials.

3) Total Quantity Generated (Inert) = Hard Rock and Large Broken Concrete + Reused in the Contract + Disposed as Public Fill - Imported Fill

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

Appendix J

Environmental Mitigation Implementation Schedule (EMIS)

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
Air Quality Measur	res				
New Distributor Ro	oads Serving the Pla	anned KTD			
AEIAR-130/2009 \$3.2	AEIAR 130/2009 EM&A Manual S2.2	8 times daily watering of the work site with active dust emitting activities.	Contractor	All relevant worksites	Not Applicable
Decommissioning	of the Radar Statior	n of the former Kai Tak Airport			
AEIAR-130/2009 S5.2.19	AEIAR 130/2009 EM&A Manual S4.2.4	The excavation area should be limited to as small in size as possible and backfilled with clean and/or treated soil shortly after excavation work. The exposed excavated area should be covered by the tarpaulin during night time. The top layer soils should be sprayed with fine misting of water immediately before the excavation.	Contractor	All relevant worksites	Not Applicable
Trunk Road T2	I				
AEIAR-174/2013 S4.9.2.1	AEIAR-174/2013 EM&A Manual S2.3.1.1	Watering of the construction areas 12 times per day to reduce dust emissions by 91.7%, with reference to the "Control of Open Fugitive Dust Sources" (USEPA AP-42). The amount of water to be applied would be 0.91L/m2 for the respective watering frequency.	Contractor	All relevant worksites	Not Applicable
		Dust enclosures with watering would be provided along the loading ramps and conveyor belts for unloading the C&D materials to the barge for dust suppression.	Contractor	All relevant worksites	Not Applicable
		8 km per hour is the recommended limit of the speed for vehicles on unpaved site roads.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009	AEIAR 130/2009	Stockpiling site(s) should be lined with impermeable sheeting and bunded. Stockpiles should	Contractor	All relevant	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
S3.2, S5.2.19, AEIAR-174/2013	EM&A Manual S2.2, S4.2, AEIAR·	be fully covered by impermeable sheeting to reduce dust emission.		worksites	
S4.9.2.2	174/2013 EM&A Manual S2.3.1.2	Use of regular watering to reduce dust emissions from exposed site surfaces and unpaved roads, particularly during dry weather. Use of frequent watering for particularly dusty construction areas and areas close to ASRs.	Contractor	All relevant worksites	Implemented
		Misting for the dusty material should be carried out before being loaded into the vehicle. Any vehicle with an open load carrying area should have properly fitted side and tail boards.	Contractor	All relevant worksites	Implemented
		Material having the potential to create dust should not be loaded from a level higher than the side and tail boards and should be dampened and covered by a clean tarpaulin.	Contractor	All relevant worksites	Implemented
		Tarpaulin covering of all dusty vehicle loads transported to, from and between site locations; The tarpaulin should be properly secured and should extent at least 300 mm over the edges of the sides and tailboards. The material should also be dampened if necessary before transportation.	Contractor	All relevant worksites	Implemented
		The vehicles should be restricted to maximum speed of 10 km per hour. Confined haulage and delivery vehicle to designated roadways insider the site. Onsite unpaved roads should be compacted and kept free of lose materials.	Contractor	All relevant worksites	Implemented
		Vehicle washing facilities should be provided at every vehicle exit point. Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving the construction sites.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.			
		Every main haul road should be scaled with concrete and kept clear of dusty materials or sprayed with water so as to maintain the entire road surface wet.	Contractor	All relevant worksites	Implemented
		Every stock of more than 20 bags of cement or dry pulverised fuel ash (PFA) should be covered entirely by impervious sheeting or placed in an area sheltered on the top and the 3 sides.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Cement or dry PFA delivered in bulk should be stored in a closed silo fitted with an audible high level alarm which is interlocked with the material filling line and no overfilling is allowed.	Contractor	All relevant worksites	Not Applicable
		Loading, unloading, transfer, handling or storage of bulk cement or dry PFA should be carried out in a totally enclosed system or facility, and any vent or exhaust should be fitted with an effective fabric filter or equivalent air pollution control system.	Contractor	All relevant worksites	Implemented
		Side enclosure and covering of any aggregate or dusty material storage piles to reduce emissions. Where this is not practicable owing to frequent usage, watering shall be applied to aggregate fines.	Contractor	All relevant worksites	Implemented
		Open stockpiles shall be avoided or covered. Prevent placing dusty material storage piles near ASRs.	Contractor	All relevant worksites	Implemented
		Routing of vehicles and position of construction plant should be at the maximum possible distance from ASRs.	Contractor	All relevant worksites	Implemented
		Dark smoke			
		Dark smoke emission shall be control in accordance with the Air Pollution Control (Smoke) Regulation and ETWB TCW 19/2005.	Contractor	All relevant worksites	Implemented
		Plant and equipment should be well maintained to prevent dark smoke emission.	Contractor	All relevant worksites	Implemented
Noise Measures					
Trunk Road T2					
AEIAR-174/2013 \$5.9.2.1	AEIAR-174/2013 EM&A Manual S3.4.1.1	The use of quieter plant, including Quality Powered Mechanical Equipment (QPME) is specified for the list of equipment: • Concrete lorry mixer • Dump Truck, 5.5 tonne < gross vehicle weight <= 38 tonne • Generator, Super Silenced, 70 dB(A) at 7m	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		 Poker, vibratory, Hand-held (electric) Water Pump, Submersible (Electric) Mobile Crane - KOBELCO CKS900 Excavator, wheeled/tracked - HYUNDAI R80CR-9 			
		Use of temporary or fixed noise barriers with a surface density of at least 10kg/m ² to screen noise from movable and stationary plant.	Contractor	All relevant worksites	Not Applicable
		Use of enclosures with covers at top and three sides and a surface density of at least 10kg/m ² to screen noise from generally static noisy plant such as air compressors.	Contractor	All relevant worksites	Not Applicable
		Use of acoustic fabric for the silent piling system, drill rigs, rock drills etc.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.3, S5.3.10, AEIAR-174/2013	AEIAR 130/2009 EM&A Manual	Only well-maintained plant should be operated on-site and plant shall be serviced regularly during the construction/ decommissioning program.	Contractor	All relevant worksites	Implemented
S5.9.2.1	S2.3, S4.3.2, AEIAR-174/2013 EM&A Manual S3.4.1.1	Silencers or mufflers on construction equipment should be utilized and shall be properly maintained during the construction/ decommissioning program.	Contractor	All relevant worksites	Not Applicable
	33.4.1.1	Mobile plant, if any, should be sited as far away from NSRs as possible.	Contractor	All relevant worksites	Implemented
		Machines and plant (such as trucks) that may be in intermittent use shall be shut down between works periods or should be throttled down to a minimum.	Contractor	All relevant worksites	Implemented
		Plant known to emit noise strongly in one direction shall, wherever possible, be orientated so that the noise is directed away from the nearby NSRs.	Contractor	All relevant worksites	Implemented
		Material stockpiles and other structures should be effectively utilized, wherever practicable, in screening noise from on-site construction/ decommissioning activities.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Use of site hoarding as a noise barrier to screen noise at low level NSRs.	Contractor	All relevant worksites	Implemented
		For the use of hand held percussive breakers (with mass of above 10kg) and portable air compressors (supply air at 500 kPa or above), the noise level of such PME shall comply with a stringent noise emission standard and a noise emission label shall be obtained from the DEP before use at any time in construction site.	Contractor	All relevant worksites	Implemented
		Quiet powered mechanical equipment (PME) shall be used for the construction of the Project.	Contractor	All relevant worksites	Implemented
		Full enclosures shall be used to screen noise from relatively static PMEs (including air compressor, bar bender, concrete pump, generator and water pump) from sensitive receiver(s).	Contractor	All relevant worksites	Not Applicable
		Movable cantilevered noise barriers shall be used to screen noise from mobile PMEs (including asphalt paver, breaker, excavator and hand-held breaker) from sensitive receiver(s). These movable cantilevered noise barriers shall be located close to the mobile PMEs and shall be moved/adjusted iteratively in step with each movement of the corresponding mobile PMEs in order to maximize their noise reduction effects.	Contractor	All relevant worksites	Not Applicable
		Only approved or exempted Non-road Mobile Machineries (NRMMs) including regulated machines and non-road vechicles with proper labels are allowed to be used in specified activities on-site.	Contractor	All relevant worksites	Implemented
Water Quality Mea	asures				
Trunk Road T2					
		Accidental Spillage			
AEIAR-174/2013 S6.4.8.5	AEIAR-174/2013 EM&A Manual S4.2.1.1	All bentonite slurry should be stored in a container that resistant to corrosion, maintained in good conditions and securely closed; The container should be labelled in English and Chinese and note that the container is for storage of bentonite slurry only.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		The storage container should be placed on an area of impermeable flooring and bunded with capacity to accommodate 110% of the volume of the container size or 20% by volume stored in the area and enclosed with at least 3 sides.	Contractor	All relevant worksites	Implemented
		The storage container should be sufficiently covered to prevent rainfall entering the container or bunded area (water collected within the bund must be tested and disposed of as chemical waste, if necessary). An emergency clean up kit shall be readily available where bentonite fluid will be stored or used.	Contractor	All relevant worksites	Implemented
		The handling and disposal of bentonite slurries should be undertaken in accordance within ProPECC PN 1/94. Surplus bentonite slurries used in construction works shall be reconditioned and reused wherever practicable. Residual bentonite slurry shall be disposed of from the site as soon as possible as stipulated in Clause 8.56 of the General Specification for Civil Engineering Works. The Contractor should explore alternative disposal outlets for the residual bentonite slurry to be disposed to a public filling area and liquid bentonite slurry, if mixed with inert fill material, to be disposed to a public filling area) and disposal at landfill should be the last resort.	Contractor	All relevant worksites	Implemented
AEIAR-174/2013 S6.4.8.8	AEIAR-174/2013 EM&A Manual S4.2.1.1	In order to protect against impacts to the surrounding marine waters of the KTTS and Victoria Harbour in the event of an accidental spillage of fuel or oil, the Contractor will be required to prepare a spill response plan to the satisfaction of AFCD, EPD, FSD, Police, TD and WSD to define procedures for the control, containment and clean-up of any spillage that could occur on the construction site.	Contractor	All relevant worksites	Implemented
		Dredging, Reclamation and Filling			
		No dredging, reclamation or filling in the marine environment shall be carried out.	Contractor	All relevant worksites	Not Applicable
Decommissioning	of the Radar Station	n of the former Kai Tak Airport			
		Building Demolition			

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
AEIAR-130/2009 \$5.4	AEIAR 130/2009 EM&A Manual S4.4	The site practices outlined in ProPECC PN 1/94 "Construction Site Drainage" should be followed as far as practicable in order to minimise surface runoff and the chance of erosion.	Contractor	All relevant worksites	Not Applicable
	54.4	There is a need to apply to EPD for a discharge licence under the WPCO for discharging effluent from the construction site. The discharge quality is required to meet the requirements specified in the discharge licence. All the runoff, wastewater or extracted groundwater generated from the works areas should be treated so that it satisfies all the standards listed in the TM-DSS. It is anticipated that the wastewater generated from the works areas would be of small quantity. Monitoring of the treated effluent quality from the works areas should be carried out in accordance with the WPCO license which is under the ambit of regional office (RO) of EPD.	Contractor	All relevant worksites	Not Applicable
		General Construction Works			
		Construction Runoff			
AEIAR- 130/2009 S3.4, S5.4/ AEIAR- 174/2013 S6.4.8.1	AEIAR 130/2009 EM&A Manual S2.4, S4.4/ AEIAR 174/2013 EM&A Manual S4.2.1.1	contamination of runoff, and erosion. Construction runoff related impacts associated with the	Contractor	All relevant worksites	Implemented
		Construction site should be provided with adequately designed perimeter channel and pre- treatment facilities and proper maintenance. The boundaries of critical areas of earthworks should be marked and surrounded by dykes or embankments for flood protection. Temporary ditches should be provided to facilitate runoff discharge into the appropriate watercourses, via a silt retention pond. Permanent drainage channels should incorporate sediment basins or traps and baffles to enhance deposition rates. The design of efficient silt removal facilities should be based on the guidelines in Appendix A1 of ProPECC PN 1/94.	Contractor	All relevant worksites	Implemented
		Ideally, construction works should be programmed to minimise surface excavation works during the rainy season (April to September). All exposed earth areas should be completed as soon as possible after earthworks have been completed, or alternatively, within 14 days of the cessation of earthworks where practicable. If excavation of soil cannot be avoided during the	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		rainy season, or at any time of year when rainstorms are likely, exposed slope surfaces should be covered by tarpaulin or other means.			
		Sediment tanks of sufficient capacity, constructed from pre-formed individual cells of approximately 6 to 8 m3 capacity, are recommended as a general mitigation measure which can be used for settling surface runoff prior to disposal. The system capacity is flexible and able to handle multiple inputs from a variety of sources and particularly suited to applications where the influent is pumped.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials (for examples, aggregates, sand and fill material) of more than 50 m ³ should be covered with tarpaulin or similar fabric during rainstorms. Measures should be taken to prevent the washing away of construction materials, soil, silt or debris into any drainage system.	Contractor	All relevant worksites	Implemented
		Manholes (including newly constructed ones) should always be adequately covered and temporarily sealed so as to prevent silt, construction materials or debris being washed into the drainage system and storm runoff being directed into foul sewers.	Contractor	All relevant worksites	Partially Implemented
		Precautions to be taken at any time of year when rainstorms are likely, actions to be taken when a rainstorm is imminent or forecast, and actions to be taken during or after rainstorms are summarised in Appendix A2 of ProPECC PN 1/94. Particular attention should be paid to the control of silty surface runoff during storm events.	Contractor	All relevant worksites	Implemented
		Oil interceptors should be provided in the drainage system and regularly cleaned to prevent the release of oils and grease into the storm water drainage system after accidental spillages. The interceptor should have a bypass to prevent flushing during periods of heavy rain.	Contractor	All relevant worksites	Implemented
		An adequately designed and located wheel washing bay should be provided at every site exit, and wash-water should have sand and silt settled out and removed at least on a weekly basis to ensure the continued efficiency of the process. The section of access road leading to, and exiting from, the wheel-wash bay to the public road should be paved with sufficient backfall toward the wheel-wash bay to prevent vehicle tracking of soil and silty water to public roads and drains.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures in th		Location / Timing	Construction Phase Implementation Status
		Drainage			
	It is recommended that on-site drainage system should be installed prior to the commencement of other construction activities. Sediment traps should be installed in order to minimise the sediment loading of the effluent prior to discharge into foul sewers. There should be no direct discharge of effluent from the site into the sea.		Contractor	All relevant worksites	Implemented
		All temporary and permanent drainage pipes and culverts provided to facilitate runoff discharge should be adequately designed for the controlled release of storm flows. All sediment control measures should be regularly inspected and maintained to ensure proper and efficient operation at all times and particularly following rain storms. The temporarily diverted drainage should be reinstated to its original condition when the construction work has finished or the temporary diversion is no longer required.	Contractor	All relevant worksites	Implemented
		Stormwater Discharges			
		Minimum distances of 100 m should be maintained between the existing or planned stormwater discharges and the existing or planned seawater intakes.	Contractor	All relevant worksites	Implemented
		Sewage Effluent			
		Construction work force sewage discharges on site are expected to be connected to the existing trunk sewer or sewage treatment facilities. The construction sewage may need to be handled by portable chemical toilets prior to the commission of the on-site sewer system. Appropriate numbers of portable toilets should be provided by a licensed contractor to serve the large number of construction workers over the construction site. The Contractor should also be responsible for waste disposal and maintenance practices.	Contractor	All relevant worksites	Implemented
		Debris and Litter			
		In order to maintain water quality in acceptable conditions with regard to aesthetic quality, contractors should be required, under conditions of contract, to ensure that site management is optimised and that disposal of any solid materials, litter or wastes to marine waters does not occur. Debris and refuse generated on-site should be collected, handled and disposed of	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EIA Ref EM&A Ref Environmental Protection Measures / Mitigation Measures			Location / Timing	Construction Phase Implementation Status
	properly to avoid entering into the adjacent harbour waters. Stockpiles of cement and other construction materials should be kept covered when not being used.				
		Accidental Spillage			
	Oils and fuels should only be used and stored in designated areas which have pollution prevention facilities. To prevent spillage of fuels and solvents to the nearby harbour waters, all fuel tanks and storage areas should be provided with locks and be sited on sealed areas, within bunds of a capacity equal to 110% of the storage capacity of the largest tank, to prevent spilled fuel oils from reaching the coastal waters of the Victoria Harbour WCZ. The bund should be drained of rainwater after a rain event.				Implemented
		Waste Management Measures			
		Waste Management Plan			
AEIAR-174/2013 S11.4.8.1	AEIAR-174/2013 EM&A Manual S9.2.1.2	Contractor should be requested to submit an outline Waste Management Plan (WMP) prior to the commencement of construction work, in accordance with the ETWB TC(W) No.19/2005 so as to provide an overall framework of waste management and reduction.	Contractor	All relevant worksites	Implemented
		Good Site Practices			
AEIAR-130/2009 S3.5, S5.5	AEIAR 130/2009 EM&A Manual S2.5, S4.5	Nomination of an approved person, such as a site manager, to be responsible for good site practices, arrangements for collection and effective disposal to an appropriate facility, of all wastes generated at the site.	Contractor	All relevant worksites	Implemented
		Training of site personnel in proper waste management and chemical waste handling procedures.	Contractor	All relevant worksites	Implemented
		Provision of sufficient waste disposal points and regular collection for disposal.	Contractor	All relevant worksites	Implemented
		Appropriate measures to minimize windblown litter and dust during transportation of waste by either covering trucks or by transporting wastes in enclosed containers.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	Ref EM&A Ref Environmental Protection Measures / Mitigation Measures		Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		A recording system for the amount of wastes generated, recycled and disposed of (including the disposal sites).	Contractor	All relevant worksites	Implemented
		Waste Reduction Measures			
		Sort C&D waste from demolition of the remaining structures to recover recyclable portions such as metals.	Contractor	All relevant worksites	Implemented
		Segregation and storage of different types of waste in different containers, skips or stockpiles to enhance reuse or recycling of materials and their proper disposal.	Contractor	All relevant worksites	Implemented
		Encourage collection of aluminum cans, PET bottles and paper by providing separate labelled bins to enable these wastes to be segregated from other general refuse generated by the work force.	Contractor	All relevant worksites	Not Applicable
		Any unused chemicals or those with remaining functional capacity should be recycled.	Contractor	All relevant worksites	Implemented
		Proper storage and site practices to minimize the potential for damage or contamination of construction materials.	Contractor	All relevant worksites	Implemented
		Construction and Demolition Materials			
		Where it is unavoidable to have transient stockpiles of C&D material within the work site pending collection for disposal, the transient stockpiles shall be located away from waterfront or storm drains as far as possible.	Contractor	All relevant worksites	Implemented
		Open stockpiles of construction materials or construction wastes on-site should be covered with tarpaulin or similar fabric.	Contractor	All relevant worksites	Implemented
		Skip hoist for material transport should be totally enclosed by impervious sheeting.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.
 Tel
 : +852 2450 8238

 Fax
 : +852 2450 8032

 E-mail
 : mcl@fugro.com

 Website
 : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures		Location / Timing	Construction Phase Implementation Status
		Every vehicle should be washed to remove any dusty materials from its body and wheels before leaving a construction site.	Contractor	All relevant worksites	Implemented
		The area where vehicle washing takes place and the section of the road between the washing facilities and the exit point should be paved with concrete, bituminous materials or hardcores.	Contractor	All relevant worksites	Implemented
		The load of dusty materials carried by vehicle leaving a construction site should be covered entirely by clean impervious sheeting to ensure dust materials do not leak from the vehicle.	Contractor	All relevant worksites	Implemented
		All dusty materials should be sprayed with water prior to any loading, unloading or transfer operation so as to maintain the dusty materials wet.	Contractor	All relevant worksites	Implemented
		The height from which excavated materials are dropped should be controlled to a minimum practical height to limit fugitive dust generation from unloading.	Contractor	All relevant worksites	Implemented
		When delivering inert C&D material to public fill reception facilities, the material should consist entirely of inert construction waste and of size less than 250mm or other sizes as agreed with the Secretary of the Public Fill Committee. In order to monitor the disposal of the surplus C&D material at the designed public fill reception facility and to control fly tipping, a trip-ticket system as stipulated in the ETWB TCW No. 31/2004 "Trip Ticket System for Disposal of Construction and Demolition Materials" should be included as one of the contractual requirements and implemented by an Environmental Team undertaking the Environmental Monitoring and Audit work. An Independent Environmental Checker should be responsible for auditing the results of the system.	Contractor	All relevant worksites	Implemented
		Chemical Waste			
		After use, chemical wastes (for example, cleaning fluids, solvents, lubrication oil and fuel) should be handled according to the Code of Practice on the Packaging, Labelling and Storage of Chemical Wastes. Spent chemicals should be collected by a licensed collector for disposal at the CWTF or other licensed facility, in accordance with the Waste Disposal (Chemical Waste) (General) Regulation.	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref EM&A Ref		Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		General Refuse			
		General refuse should be stored in enclosed bins or compaction units separate from C&D material. A licensed waste collector should be employed by the contractor to remove general refuse from the site, separately from C&D material. Effective collection and storage methods (including enclosed and covered area) of site wastes would be required to prevent waste materials from being blown around by wind, wastewater discharge by flushing or leaching into the marine environment, or creating odour nuisance or pest and vermin problem.	Contractor	All relevant worksites	Implemented
Land Contamination	on Measures				
		For any excavation works conducted at Radar Station			
		As the risk due to dermal contact with groundwater by site workers is uncertain, it is recommended that personnel protective equipment (PPE) be used by site workers as a mitigation measure.	Contractor	All relevant worksites	Not Applicable
Landscape and Vi	sual Impact	•			
		New Distributor Roads Serving the Planned KTD			
		Construction Phase			
		All existing trees should be carefully protected during construction.	Contractor	All relevant worksites	Not Applicable
		Trees unavoidably affected by the works should be transplanted where practical. Detailed transplanting proposal will be submitted to relevant government departments for approval in accordance with ETWBC 2/2004 and 3/2006. Final locations of transplanted trees should be agreed prior to commencement of the work.	Contractor	All relevant worksites	Not Applicable
		Control of night-time lighting.	Contractor	All relevant worksites	Not Applicable

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref Environmental Protection Measures / Mitigation Measures		Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		Erection of decorative screen hoarding.	Contractor	All relevant worksites	Not Applicable
		Trunk Road T2			
		Construction Phase			
AEIAR-174/2013 S9.9.1.1	AEIAR-174/2013 EM&A Manual S7.2.1.2	All works shall be carefully designed to minimize impacts on existing landscape resources and visually sensitive receivers. Existing trees within works area shall be retained and protected.	Contractor	All relevant worksites	Not Applicable
	57.2.1.2	Existing trees of good quality and condition that are unavoidably affected by the works should be transplanted.	Contractor	All relevant worksites	Not Applicable
		Large temporary stockpiles of excavated material shall be covered with unobtrusive sheeting to prevent dust and dirt spreading to adjacent landscape areas and vegetation, and to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Not Applicable
		Construction plant and building material shall be orderly and carefully stored in order to create a neat and tidy visual appearance.	Contractor	All relevant worksites	Implemented
		Erection of decorative screen hoarding should be designed to be compatible with the existing urban context.	Contractor	All relevant worksites	Not Applicable
		All lighting in construction site shall be carefully controlled to minimize light pollution and night- time glare to nearby residences and GIC user. The contractor shall consider other security measures, which shall minimize the visual impacts.	Contractor	All relevant worksites	Not Applicable
General Condition					
		The Permit Holder shall display conspicuously a copy of this Permit on the Project site(s) at all vehicular site entrances/exits or at a convenient location for public's information at all times. The Permit Holder shall ensure that the most updated information about the Permit, including any amended Permit, is displayed at such locations. If the Permit Holder surrenders a part or the whole of the Permit, the notice he sends to the Director shall also be displayed at the same	Contractor	All relevant worksites	Implemented

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com Website : www.fugro.com

EIA Ref	EM&A Ref	Environmental Protection Measures / Mitigation Measures	Who to implement the measure	Location / Timing	Construction Phase Implementation Status
		locations as the original Permit. The suspended, varied or cancelled Permit shall be removed from display at the Project site(s).			

Implementation status: Implemented / Partially Implemented / Not Implemented / Not Applicable

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com

Appendix K

Weather and Meteorological Conditions during Reporting Month

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com

	Mean	•			Mean Relative	Total
Date	Pressure (hPa)	Maximum (deg. C)	Mean (deg. C)	Minimum (deg. C)	Humidity (%)	Rainfall (mm)
	-	-	June 2020	-	-	-
1	1010.2	32.2	29.9	28.7	85	Trace
2	1009.5	30.5	29.0	27.4	87	6.4
3	1008.6	32.1	29.8	28.7	82	Trace
4	1008.0	32.7	30.1	28.7	83	Trace
5	1007.3	32.3	30.0	27.5	88	2.6
6	1007.2	29.9	26.8	24.1	94	183.8
7	1005.6	29.4	27.7	24.6	92	107.4
8	1006.2	29.3	28.6	25.2	92	40.9
9	1008.2	31.4	29.4	28.1	87	1.3
10	1008.8	31.7	29.8	28.3	81	0.2
11	1007.4	33.9	30.2	28.1	55	Trace
12	1005.4	35.0	30.4	27.8	32	0.0
13	1004.0	33.7	29.8	27.6	84	11.7
14	1008.3	31.5	28.0	26.0	82	29.3
15	1011.1	32.6	29.3	26.3	64	0.2
16	1009.7	31.1	28.6	26.8	70	9.4
17	1008.3	31.7	29.1	27.5	54	0.9
18	1008.5	31.8	29.5	27.7	56	0.1
19	1009.2	32.4	29.9	28.2	52	Trace
20	1008.5	32.7	30.0	28.3	54	0.0
21	1006.3	32.6	30.2	28.7	77	Trace
22	1006.4	32.6	30.4	29.2	79	Trace
23	1007.1	32.6	30.3	29.1	73	0.0
24	1006.5	32.9	30.4	29.0	86	0.0
25	1006.4	32.4	30.2	29.1	87	0.1
26	1007.9	32.0	30.3	29.4	86	1.3
27	1008.4	32.5	30.2	28.5	83	1.2
28	1007.8	33.0	30.4	28.5	81	Trace
29	1006.1	34.2	30.5	28.2	78	0.4
30	1004.6	34.9	30.7	28.7	72	Trace

Source: Hong Kong Observatory

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com

Appendix L

Cumulative statistics on Environmental Complaints, Notifications of Summons and Successful Prosecution

MATERIALAB CONSULTANTS LIMITED Room 723 & 725, 7/F, Block B, Tel : +852 2450 8238

Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Fax : +852 2450 8032 E-mail : mcl@fugro.com

Environmental Complaints Log

Reference No.	Date of Complaint Received	Received From	Received By	Nature of Complaint	Date of Investigation	Outcome	Date of Reply
20161207_complaint_c	7 Dec 2016	EPD	Andy Choy (CRBC)	Air	13 Feb 2017	Project- related	13 Feb 2017
20170209_complaint_c	9 Feb 2017	EPD	Andy Choy (CRBC)	Air	22 Feb2017	Not Project- related	7 Mar 2017
20170502_complaint_c	2 May 2017	CEDD	Andy Choy (CRBC)	Noise	4 May 2017	Not Valid	22 May 2017
20170716_complaint_a	16 July 2017	CEDD	HMJV	Water Quality	4 Aug 2017	Not Project- related	4 Aug 2017
20180530_complaint	30 May 2018	EPD	CRBC	Air	9 June 2018	Not Valid	20 June 2018

Cumulative Statistics on Complaints

Environmental Parameters	Cumulative No. Brought Forward	No. of Complaints This Month	Cumulative Project- to-Date
Air	3	0	3
Noise	1	0	1
Water	1	0	1
Waste	0	0	0
Total	0	0	0

Cumulative Statistics on Notification of Summons and Successful Prosecutions

Environmental Parameters	Cumulative No. Brought Forward	No. of Notification of Summons and Prosecutions This Month	Cumulative Project- to-Date
Air	0	0	0
Noise	0	0	0
Water	0	0	0
Waste	0	0	0
Total	0	0	0

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com

Appendix M

Summary of Site Audit in the Reporting Month

MATERIALAB CONSULTANTS LIMITED Room 723 & 725, 7/F, Block B, Tel : +852 2450 8238

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong.

Summary of Site Audit in the Reporting Month

Parameters	Date	Observations and Recommendations	Follow-up
Air Quality		NA	
Noise	NA		
Water Quality	17 June 2020	Observation: Manholes should be covered to prevent silt and construction materials. (Zone 4)	24 June 2020
	24 June 2020	Observation: Manholes should be proper covered to prevent silt and construction materials direct discharge. (Zone 4)	24 June 2020
Chemical and Waste Management	NA		
Land Contamination	NA		
Landscape and Visual Impact	NA		
General Condition	NA		
Permit / Licenses	17 June 2020	Reminder: The contractor was reminded the EP and CNP should be provided on the site. (Zone 4)	NA

Room 723 & 725, 7/F, Block B, Profit Industrial Building, 1-15 Kwai Fung Crescent, Kwai Fong, Hong Kong. Tel : +852 2450 8238 Fax : +852 2450 8032 E-mail : mcl@fugro.com

Appendix N

Outstanding Issues and Deficiencies

Summary of Outstanding Issues and Deficiencies in the Reporting Month

Parameters	Outstanding Issues	Deficiencies
Air Quality	NA	
Noise	NA	
Water Quality	NA	
Chemical and Waste Management	NA	Any items of deficiencies can be referred to Appendix M .
Land Contamination	NA	
Landscape and Visual Impact	NA	
General Condition	NA	
Others	NA	